Ne-He lazeri ishlash prinsiplari Reja: Kirish


Kurs ishining dolzarbligi



Yüklə 94,92 Kb.
səhifə2/14
tarix24.12.2023
ölçüsü94,92 Kb.
#192460
1   2   3   4   5   6   7   8   9   ...   14
Ne-He lazeri ishlash prinsiplari Reja Kirish-fayllar.org

Kurs ishining dolzarbligi. O‘zbekiston Respublikasi Prezidentining 2021-yil 19-martdagi “Fizika sohasidagi ta’lim sifatini oshirish va ilmiy tadqiqotlarni rivojlantirish chora-tadbirlari to‘g‘risida”gi qarori yurtimizda fizika-texnika fanini rivojlantirish strategiyasini belgilab berdi. Mamlakatimizda fizika-texnika fanining rivoji bevosita universitetlarda olib borilayotgan fizik ta’limning sifatiga bog‘liq bo‘lsa, ta’limning sifati esa ko‘p jihatdan kadrlar salohiyatiga bog‘liq.
Fizika fani bo‘yicha ta’lim sifatini tubdan oshirish, yuqori malakali pedagog va ilmiy xodimlarni tayyorlash, ta’lim muassasalarini zamonaviy laboratoriyalar, darsliklar va boshqa o‘quv jihozlari bilan ta’minlash, ilmiy tashkilotlarning salohiyatini rivojlantirish, ularning faoliyatini samarali tashkil etish, ilm-fan va ishlab chiqarish sohalari o‘rtasida o‘zaro yaqin muloqot va hamkorlikni yo‘lga qo‘yilgan .
Kurs ishining maqsadi: Lazer fizikasi fanini chuqur o’rganish va bilim, ko’nikmalrni yanada orttirish. Ko’p fotonli jarayonlar qay darajada muhimligini aniqlash.
Kurs ishining vazifalari: Mavzuga doir manba topish, axborotlarni tartiblash, rejani shakllantirish; O’quvchini mavzu doirasida yetarli bilim va ko’nikmalar bilan tanishtirish;
1.- Lazer texnologiyasi, Nochiziqli optika, Ko‘p fotonli jarayonlarni o’rganish.
2.- Yoqutli lazer nurlanishini tahlil qilish.
3.- Ko'p fotonli jarayonlar yoritish
4. Izotrop va anizotrop kristallar.
Kurs ishining predmeti: Lazerlar, Ko’p fotonli jarayonlar sifatida qo’llanilishi.
Kurs ishining tuzilmasi : Kirish, birinchi va ikkinchi boblar, yakuniy xulosa, eng so`ngida esa foydalanilgan adabiyotlar ro`yhati.

I Bob. Ne-He lazeri haqida umumiy ma’lumot.
1.1. Lazerlar haqida umumiy ma’lumot.
Lazer kogerent nurlanish chiqaruvchi elektr optik qurilmadir. Atama inglizcha "laser" qisqartmasidan kelib chiqib, Light Amplification by Stimulated Emission of Radiation (majburiy nurlanish yordamida yorugʻlikni kuchaytirish),[1]deb yoyiladi. Tipik lazer divergensiyasi past va toʻlqin uzunligi qatʼiy cheklangan (yaʼni, monoxrom) yorugʻlik chiqaradi.
Lazer (ing. laser; Light Amplifi cation by Stimulated Emission of Radiation — majburiy nurlanish yordamida yorugʻglikning kuchayishi maʼnosini anglatadigan soʻz birikmalarining bosh harflaridan olingan), optik kvant generator — ultrabinafsha, infraqizil va koʻzga koʻrinadigan soha diapozondagi nurlanishlarni hosil qiluvchi qurilma; kvant elektronikadagi asosiy qurilmalardan biri. Birinchi lazer 1960-yilda yoqutda amerikalik olim T. Meyman tomonidan yaratilgan. Ishi atom va molekulalarning majburiy nurlanishiga asoslangan. lazer har xil energiya (elektr, yorugʻlik, kimyoviy, issiklik va h.k.)ni optik diapozondagi kogerent elektromagnit nur energiyasiga aylantirib beradi. U 3 element — energiya manbai, aktiv muhit (modda), teskari bogʻlanishdan iborat (agar lazer kogerent nurni kuchaytirish uchun xizmat qilsa, teskari boglanish zarur emas). Lazer boshqa yorugʻlik manbalardan kogerentligi, monoxromatikligi, juda kichik burchak ostida yoʻnalganligi bilan, nur kuvvatining katta spektral zichlikka, juda yuqori tebranish chastotasiga egaligi bilan farqlanadi. Aktiv muhitga koʻra, lazer quyidagi guruhlarga boʻlinadi: 1) qattiq jism va suyuqlikdan tayyorlangan lazer; 2) gazli lazer; 3) yarimoʻtkazgichli lazer. Bulardan tashqari, eksimer, kimyoviy va h.k. lazer xillari ham bor. lazerda teskari bogʻlanish optik rezonator (ikki koʻzgu) yordamida amalga oshiriladi. Koʻzgular orasiga aktiv modda joylashtiriladi. Nur toʻlqini koʻzgulardan qaytib, yana aktiv moddadan oʻtadi, unda majburiy oʻtishlarni yuzaga keltiradi. Koʻzgulardan biri qisman shaffof boʻlib, u cheksiz koʻp oʻtishlardan keyin kuchaygan nurni tashqariga chiqib ketishiga xizmat qiladi.
Lazer ning ishlash tamoyilida atom tuzil ishi muhimdir. Moddalarni tashkil qilgan atomlarni energetik holatlari (orbitasi) har xil. Pastki orbitada zarrasi boʻlgan atom turgʻun, yuqori orbitada zarrasi boʻlgan atom beqaror boʻladi. Yuqori orbitada zarra uzoq turmaydi. Maʼlum vaqt oʻtgach, zarra pastki orbitaga tushib, atom oʻzidan nur chiqaradi. Yuqori energetik holatlar (orbita) dagi oʻzoʻzidan pastga, yaʼni, energetik turgʻunroq holatga tushmasa, uni "turtib" tushirib yuborishi mumkin. Buni fanda majburiy nurlatish deyiladi. Togʻ ustidan pastga yumalatilgan bitta tosh bir necha toshni yumalatib tushirganidek, moddaning bitta zarrasi turtib yuborilsa, barcha orbitalardagi zarralar qoʻzgʻaladi. Atom chiqargan nur bilan yutilgan nur koʻshilib, ikkitasi toʻrtta, toʻrttasi sakkizta va h.k. Lazer nuriga aylanadi. Bu nurlarni kvant generator (elektr signal kuchaytirgichiga oʻxshab) kuchaytirib, gʻoyat toʻgʻri yoʻnalgan nur (energiya)ga aylantirib beradi. Energiya manbai (oʻzgarmas tok, yuqori yoki oʻta yuqori chastotali tok, optik yoki lazer nuri, elektron nur dastasi) hisobiga aktiv moddadagi elektronlar yuqori (uygʻotilgan) sathlarga oʻtib, inversiya holati (elektronlar soni yuqori sath   da quyi sath N, dagiga nisbatan koʻp boʻladi) vujudga keladi. Ularga biror energiya manbai bilan taʼsir ettirilsa aktiv modda ishga tushadi. Bunda elektronlarga berilgan energiya bir necha ming marta koʻpayadi va shu onda lazer nuri shaklini oladi. Bundan tashqari, lazer nurining qurilmadagi kuchaytirish koeffitsiyenti  unda sodir boʻladigan energiya yoʻqotishlar koeffitsiyenti Ky dan ancha katta boʻlishi kerak. Shu shartlar bajarilganda lazer nuri generatsiyasi (hosil boʻlishi)ga erishish mumkin. Lazer 2 xil ish rejimiga ega. Agar unda uzluksiz energiya manbaidan foydalanilsa, uzluksiz ingichka nur hosil qilish mumkin. Agar manba impulyeli energiya bersa, lazer nur impulslarini beradi.
Qattiq jismlardan tayyorlangan lazerda (mas, yoqutli lazerda) 0,05% gacha xrom ( +) ionlari (aktivator) qoʻshilgan alyuminiy oksid ( )dan tayyorlangan qizil kristall shisha tayoqcha ishlatiladi. Bunda yoqut silindr shaklida boʻlib, yoqut oʻqining ikki uchiga optik rezonator hosil qiluvchi koʻzgular joylashtirilgan. Impulsli lampadan chiqayotgan yorugʻlik tebrantirishni vujudga keltiradi. Lampaning yorugʻligi yoqutga tushganda, xrom ionlari lampadan chiqayotgan radiatsiya spektrining yashil va sarik, qismlarini yutib "uygʻongan" aktivlashgan holatga oʻtadi. Natijada nurlanishga tayyor aktiv muhit hosil boʻladi va yoqutning oʻqi boʻylab koʻzguga tik yoʻnalgan jala shaklida koʻpayib boruvchi yorugʻlik kvantlari paydo boʻladi. Yoqutli lazerlarda generatsiyalanayotgan yorugʻlikning quvvati 20 kVt gacha yetadi. Ularning f.i.k. 0,1% dan 10% gacha. Lazer nuri generatsiyasi aktivatorning energiya sathlari orasidan oʻtishiga bogʻliq. Unda hosil boʻlgan infraqizil nurning toʻlqin uzunligi >.=0,69 mkm. Qattiq jismli lazerlardan neodim lazerida aktiv modda vazifasini neodim ( +) ionlari qoʻshilgan shisha (CaWO4) tayoqchadan foydalaniladi. Bu lazer =1,06 mkm li infraqizil nur chiqaradi. Suyuq jismlardan tayyorlangan lazerda aktiv modda oʻrnida "Rodamin-6J", piranin, tripaflavin va boshqa ishlati-ladi. Boʻyoqni erituvchi sifatida spirt, atseton, toluol va boshqalardan foydalanib, aktiv modda shisha kyuvetaga joylash-tiriladi (2rasm). Azot lazer yordamida uygʻotiladigan boʻyoq lazerning sxematik tuzilishi koʻrsatilgan. Gazli lazerda [bi-rinchi gazli lazer (He-Ne) aralashmasida amerikalik olim A. Javan tomonidan yaratilgan] aktiv muhit gaz (yoki gaz aralashmasi)dan boʻladi. Masalan, geliy-neon (Ne-He)li aktiv muhit geliy va neon gazlar aralashmasidan iborat (3-rasm). Gaz aralashmasi elektr razryadi bilan aktivlashgan holatga keladi. Bun-day lazer da generatsiya Ne ning sathlar orasidan oʻtishida sodir boʻladi. Bunda 3 ta toʻlqin uzunlikdagi nur chiqadi: ^.=0,63 mkm (qizil nur), L2=1,15 mkm va X3=3,39 mkm (infraqizil nurlar). Gazli lazerdan (CO2+N2) da X=10,6 mkm uzunlikdagi nur chiqadi. Ionli va kimyoviy lazerlar ham gazli lazer hisoblanadi. Ionli lazerda aktiv muhit - ionlashgan atomlar, kimyoviy lazerda esa kimyoviy reak-siyalarda "uygʻongan" holatga oʻtgan atomlar boʻladi (ion sathlarda ishlovchi argon lazeri koʻk nur chiqaradi). Oʻzbekiston milliy universiteti (Oʻzbekiston milliy universiteti)ning kvant radiofizika kafedrasida oʻta yuqori chastota sohasiga oid tranzistorli avtogeneratorlarda ishlovchi ixcham yengil SO2 lazeri yaratilgan. Yarimoʻtkazgichli mas, GaAs lazerlarda aktiv muhit yarimoʻtkazgichlardan boʻladi. Bunday lazerda muhit optik va elekt-ronlar oqimi yordamida aktiv holatga keltiriladi. Bu turdagi lazerlarda lazer oʻtishlari oʻtkazuvchanlik-valent zonalari va donorakseptor sathlari orasida boʻladi. Bular lazer diodlari deyiladi. Yarimoʻtkazgichli diod qalinligi 0,1 mm va yuzasi bir necha mm2 boʻlgan kristall plastinkadan iborat (4-rasm). Bu diodlar orqali toʻgʻri tok oʻtkazilganda elektronlar yuqori zona yoki sathlarga oʻtib, inversiya holati roʻy beradi. Elektronlar quyi zona (yoki sathlar)ga oʻtganida elektron-kovaklar rekombinatsiyasi natijasida ajralgan energiya hisobiga lazer nuri generatsiyasi kuzatiladi. GaAs lazeridan chiquvchi in-fraqizil nurning toʻlqin uzunligi ^.=0,84 mkm. Yarimoʻtkazgichli lazerlardan aktiv moddasi CdS (koʻk nur), CdTe (qizil, toʻq qizil nur -qirmizi), CaSb (qizil; infraqizil nur) boʻlgan lazerlar mavjud. Yarimoʻtkazgichli lazerlarning tuzilishi sodda, oʻlchami kichik va ular uzoq ishlay oladi. Lazerlardagi nur quvvati qattiq jismli lazer., suyuq jismli lazer, gazli lazer va yarimoʻtkazgichli lazer tartibida, f.i.k. esa yarimoʻtkazgichli lazer, suyuq jismli lazer, gazli lazer va qattiqjismli lazer tartibida kamayib boradi. Nurning ingichkali-gi (tor burchak ostida yoʻnalgashgagi) gazli lazerlarda eng yaxshi, yarimoʻtkazgichli lazerlarda esa eng yomon. Kurilmaning oʻlchamlari, ogʻirligi qattiq jismli lazerlarda eng katta, gazli va suyuk, jismli lazerlarda oʻrtacha, yarimoʻtkazgichli lazerlarda esa eng kichik. Turli lazerlar nuri ultrabinafshadan tortib, koʻzga koʻrinadigan soha va infraqizil diapazonlarni qamrab oladi. Lazer lazer moddasi va unga energiya yigʻib beruvchi optik chuqurdan iborat boʻladi. Lazer moddasi sifatida muayyan optik xossalarga va erkin elektronlarga ega modda (gaz, suyuqlik, qattiqlik) ishlatilishi mumkin. Optik chuqur esa (eng oddiy holda) ikki koʻzgudan iborat boʻlib, yorugʻlik ular orasida joylashgan lazer moddasidan oʻtib turadi. Bunda koʻzgulardan biri yarim shaffof boʻlib, undan lazer nuri sizib chiqadi. Spektrning optik qismida ishlatiladigan yorug‘lik manbalarining nurlanishi kogerent bo‘lmaydi, masalan, manbaning butun nurlanishi uning atomlari, molekulalari, ionlari, erkin elektronlari kabi mikroskopik elementlari chiqarayotgan va o‘zaro kogerent bo‘lmagan oqimlardan tashkil topgan bo‘ladi. Gaz razryadining yorug‘lanishi, su’niy va tabiiy manbalarning issiqlik nurlanishi, turli usulda uyg‘otilgan lyuminessensiya kogerent bo‘lmagan nurlanishga misol bo‘la oladi.
XX asrning 60 yillari boshida boshqa tipdagi yorug‘lik manbalari yaratilgan bo‘lib, ular optik kvant generatorlari (OKG) yoki lazerlar deb ataladi. Kogerent bo‘lmagan manbalardagiga qarama-qarshi ravishda kvant generatorning bir-biridan mikroskopik masofalarda bo‘lgan qismlaridan chiqayotgan elektromagnitik to‘lqinlar o‘zaro kogerent bo‘ladi. Bu jihatdan kvant generatorlari kogerent radio to‘lqinlari manbalariga o‘xshash bo‘ladi.
Nurlanishning kogerentligi optik kvant generatorlarining qariyib hamma xususiyatlarida ko‘rinadi. Nurlanishning to‘la energiyasi bundan istisno bo‘ladi, chunki bu energiya kogerent bo‘lmagan manbalardagi kabi dastavval uzatilayotgan energiyaga bog‘liq bo‘ladi. Lazerlarning nurlanishi kogerentligi bilan bog‘langan ajoyib xususiyati shundan iboratki, energiya vaqt davomida, spektrda, fazoda tarqalish yo‘nalishlari bo‘yicha konsentratsiyalanadi. Ba’zi kvant generatorlarining nurlanishi yuqori darajada monoxromatik bo‘ladi. Boshqa lazerlar davom etish vaqti 10-12 с ga teng bo‘lgan juda qisqa impulslar chiqaradi; shuning uchun bunday nurlanishning oniy quvvati juda katta bo‘lishi mumkin.
Lazerlarning yaratilishi insoniyat ilmiy-texnik taraqqiyotining o‘lkan yutuqlaridan biri desa bo‘ladi. Lazerlar yaratilishining boshlanishi 1916 yilga borib taqaladi. Usha yili buyuk fizik olim A.Eynshteyn birinchi bo‘lib, majburiy nurlanish tushunchasini kiritdi, va nazariy yo‘l bilan majburiy nurlanish uni majburlovchi nurlanishga kogerentligini (mosligini) ko‘rsatadi. 1930 yilda P.Dirak o‘zi tomonidan yaratilgan nurlanishning kvantomexanik nazariyasi asosida majburiy nurlanish va uning kogerentlik xususiyatlarini chuqurroq va aniqroq taxlil qilib, tushuntirib berdi. Lekin bu lazerning yaratilishi uchun yetarli emas edi. 1930 yildan boshlab optik spektroskopiya sohasida ko‘plab ilmiy-tadqiqot ishlari boshlanib ketdi. Bu izlanishlar natijasida atomlar, molekulalar, ionlarning energetik sathlari haqida ko‘plab ma’lumotlar olindi va keyinchalik turli lazerlarning yaratilishida ishlatildi. Bu ishlarga S.YE.Frish va V.A.Fabrikant kabi Rossiya olimlari ham o‘z hissalarini qo‘shishdi.
1939 yilda V.A.Fabrikant birinchi bo‘lib, yorug‘lik nurining majburiy nurlanish xisobiga kuchayishining imkoniyati borligini aytdi. 1951 yilning yozida, u o‘zining xodimlari bilan majburiy nurlanish yordamida elektromagnit nurlanishni (ultrabinafsha, ko‘rinuvchi, infraqizil va radioto‘lqinlar sohasida) kuchaytirish uslubi uchun avtorlik guvoxnomasini olishga taklif berishgan. Bu takliflarida lazerlarning faol muhitini yaratishning asosiy g‘oyalari bayon etilgan edi. Lekin optik kuchaytirish g‘oyalaridan tashqari , uni amalda bajarish va nixoyat kogerent nurlarning xosil qilish uchun o‘ziga xos teskari bog‘lanishli optik rezonator bo‘lishi kerak edi. Usha yillarda fanning optika bo‘limida optik soha uchun rezonatorlar o‘ylab topilmagan edi.
Kvant elektronikasi yoki lazerlar fizikasining rivojlanishida radiofizikanig bo‘limi bo‘lgan radiospektroskopiya muhim omil bo‘ldi. Uning keskin rivojlanishi 1940 yillardan boshlanib, ilmiy izlanishlar yo‘nalishi atom va molekula spektroskopiyasidan tashqari vaqt va chastotaning, ya’ni o‘ta yuqori chastota (O‘YUCH) standartlarini yaratilishga bag‘ishlangan edi. Bu ilmiy izlanishlar natijasida 1950 yillarning boshlarida bir-birlaridan mustaqil ravishda N.G.Basov, A.M.Proxorov (FIAN, Rossiya) va Ch.Tauns (AQSH, Kolumbiya universiteti) tomonidan majburiy nurlanish g‘oyalaridan amalda foydalanib, ammiak molekulasida ishlovchi molekulyar kuchaytirgich va generator (Mazer) yaratildi .
Mazer (Maser - microwave amplification by stimulated emission of radiation) - ingliz so‘zlaridagi bosh harflardan tashkil topgan va mazmuni mikroto‘lqinni majburiy nurlanish hisobiga kuchaytirishdir. Shu ishlari uchun ular 1964 yili Nobel mukofotining sovrindori bo‘lishdi.
Kvant elektronikasining rivojlanishi elektromagnit to‘lqinning yangi, infraqizil va ko‘zga ko‘rinuvchi sohalarida kogerent nurlanish olishga yo‘naltirildi. Dunyoning ko‘p ilmiy laboatoriyalarida lazerlar yaratish ustida ish boshlab yuborildi. Bu ishlarning rivojlanishida A.M. Proxorovning kvant qurilmalarida ochiq optik rezanotor sifatida Fabri-Pero ( etaloni) interferometrini qo‘llash g‘oyasi hal qiluvchi omil bo‘ldi.

Yüklə 94,92 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   ...   14




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin