O‘zbekiston respublikasi oliy ta’lim, fan va innovatsiyalar vazirligi


Kurs ishining maqsadi va vazifasi



Yüklə 455,4 Kb.
səhifə3/10
tarix05.05.2023
ölçüsü455,4 Kb.
#108187
1   2   3   4   5   6   7   8   9   10
o\'ljaboyeva07.21Oshkormas

Kurs ishining maqsadi va vazifasi: Matematikani o’qitish samaradorligini oshirishda zamonaviy pedagogik texnologiyalar va ularni qo’llash usullarini ishlab chiqish, dastur materiallariga mos funksiya hosilalari va differensiallar ustida amallar o’rganishning samarali usullarini aniqlash yangi pedagogok texnologiyalardan foydalanib funksiya hosilasi va differensiallar ustida masalalarni yechishni amalga oshirish yo’llarini izlashdan iborat.
Kurs ishining ob’yekti: O’quvchilarda oshkormas va parametric ko’rinishdagi funksiya hosilasi va differensiallar ustida ishlash usullari va matematika darslarida zamonaviy texnologiyalarni qo’llash jarayoni.
Kurs ishining asosiy ilmiy – uslubiy yangiligi:
-oshkormas va parametric ko’rinishdagi funksia hosilasi va differensiallarga oid masalalarni o’rganish, nazariy, uslubiy izlanishlar olib borildi.
-muammoni yechimlarini o’rganishni takomillashtirish bo’yicha alohida metodik ishlanma ishlab chiqildi.

Asosiy qism:
1-§. Hosilaning ta’rifi, geometrik va mexanik ma’nolari
Hosilaning ta’riflari
funksiya intervalda aniqlangan bo‘lsin. Ixtiyoriy nuqtani olamiz va bu nuqtada argumentga orttirma ( ) beramiz. Bunda funksiya orttirma oladi.
1-ta’rif. Agar limit mavjud va chekli bo‘lsa, bu limitga funksiyaning nuqtadagi hosilasi deyiladi (yoki yoki ) kabi belgilanadi.
Shunday qilib,
. (6)
Agar ning biror qiymatida bo‘lsa, u holda funksiya nuqtada musbat ishorali (manfiy ishorali) cheksiz hosilaga ega deyiladi. Shu sababli 1-ta’rif bilan aniqlanadigan hosila chekli hosila deb yuritiladi.
Misollar. 1. funksiyaning nuqtadagi hosilasini topamiz. Buning uchun nuqtada argumentga orttirma beramiz va funksiyaning mos orttirmasini topamiz:
.
Orttirmalar nisbatini tuzamiz:
.
Bu nisbatning dagi limitini topamiz:
.
2. funksiyaning hosilasini hosila ta’rifini va tangenslar ayirmasi formulasini qo‘llab, topamiz:


2-ta’rif. funksiyaning nuqtadagi o‘ng (chap) hosilasi deb
limitga aytiladi.
Misol. funksiyaning nuqtadagi o‘ng va chap hosilalarini topamiz. Berilgan funksiyaning nuqtadagi orttirmasini topamiz:

U holda

Bu misolda Shu sababli funksiya uchun da nisbatning limiti mavjud emas va funksiya nuqtada hosilaga ega bo‘lmaydi.
Funksiya hosilasining yuqorida keltirilgan ta’riflaridan ushbu tasdiqlar kelib chiqadi: agar funksiya nuqtada hosilaga ega bo‘lsa, funksiya shu nuqtada bir-biriga teng bo‘lgan o‘ng va chap hosilalarga ega bo‘lib, bo‘ladi; agar funksiya nuqtada o‘ng va chap hosilalarga ega bo‘lib, bo‘lsa, funksiya shu nuqtada hosilaga ega va bo‘ladi.
Funksiyaning hosilasini topishga funksiyani differensiallash deyiladi.
Agar funksiya biror oraliqda aniqlangan bo‘lsa va hosila bu oraliqning har bir nuqtasida mavjud bo‘lsa, u holda

formula hosilani ning funksiyasi sifatida aniqlaydi. Bundan keyin, agar
funksiyani differensiallashda nuqta ko‘rsatilmagan bo‘lsa, hosilani
ning mumkin bo‘lgan barcha qiymatlarida topamiz va deb yozamiz.


Yüklə 455,4 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin