O‘zbekiston respublikasi oliy ta’lim, fan va innovatsiyalar vazirligi


Teskari trigonometrik funksiyalar



Yüklə 455,4 Kb.
səhifə6/10
tarix05.05.2023
ölçüsü455,4 Kb.
#108187
1   2   3   4   5   6   7   8   9   10
o\'ljaboyeva07.21Oshkormas

6. Teskari trigonometrik funksiyalar. funksiya funksiyaga teskari. Bunda .
U holda
.
Demak,

funksiyaning hosilasini formuladan foydalanib topamiz:

Demak,

funksiyaning hosilasini teskari funksiyaning hosilasi formulasidan foydalanib topamiz:

Demak,

va funksiyalar bog‘lanishga ega.
Bundan

Demak,

3-§. Differensiallash qoidalari va hosilalar jadvali
Keltirib chiqarilgan differensiallash qoidalarini va asosiy elementar funksiyalarning hosilalari formulalarini jadval ko‘rinishida yozamiz.
Amalda ko’pincha murakkab funksiyalarning hosilalarini topishga to‘g‘ri keladi. Shu sababli quyida keltiriladigan formulalarda argument oraliq
argumentga almashtiriladi.
Differensiallash qoidalari:
1. differensiallanuvchi funksiyalar;
2. xususan o‘zgarmas son;
3. xususan
4. , agar va ;
5. , agar va .

Asosiy elementar funksiyalarning hosilalar jadvali:
1.
2. xususan
3. xususan
4. xususan
5. 6.
7. 8.
9. 10.
11. 12.
13. 14.
15. 16.

Keltirilgan diferensiallash qoidalari va asosiy elementar funksiyalarning hosilalar jadvali bir o‘zgaruvchi funksiyasi differensial hisobining asosini tashkil qiladi, ya’ni ularni bilgan holda qiyinchilik darajasi qanday bo‘lishidan qat’iy nazar har qanday elementar funksiyaning hosilasini topish mumkin. Bunda yana elementar funksiya hosil bo‘ladi. Shunday qilib, differensiallash jarayonida


elementar funksiyalar sinfidan tashqariga chiqilmaydi.
Misol. funksiyaning hosilasini topamiz:


Hosilani topishda differensiallashning 1,2 qoidalari va 3,4,9 formulalaridan
foydalanildi.

Yüklə 455,4 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin