cess causing the seizure activity is too severe
to be suppressed by routine doses of drugs.
Such patients are sometimes treated by large
intravenous doses of gamma-aminobutyric acid
agonist drugs, such as barbiturates or propofol,
which at sufficiently high dosage can suppress
all brain activity. However, unless the underly-
ing brain process can be reversed, the prognosis
of patients with nonconvulsive status epilepticus
who do not awaken after anticonvulsant treat-
ment is poor
168
(see also Seizures in Chapter 5).
Evoked potentials may also be used to test
the integrity of brainstem and forebrain path-
ways in comatose patients. Although they do
not provide reliable information on the loca-
tion of a lesion in the brainstem, both auditory-
and somatosensory-evoked potentials, and cor-
82
Plum and Posner’s Diagnosis of Stupor and Coma
tical event-related potentials, can provide
information on the prognosis of patients in
coma.
169
This use will be discussed in greater
detail in Chapter 8.
REFERENCES
1. Dunn C, Held JL, Spitz J, et al. Coma blisters:
report and review. Cutis 45 (6), 423–426, 1990.
2. Teasdale G, Jennett B. Assessment and prognosis of
coma after head injury. Acta Neurochir (Wien) 34
(1–4), 45–55, 1976.
3. Gill MR, Reiley DG, Green SM. Interrater reliabil-
ity of Glasgow Coma Scale scores in the emergency
department. Ann Emerg Med 43, 215–223, 2004.
4. McNarry AF, Goldhill DR. Simple bedside assess-
ment of level of consciousness: comparison of two
simple assessment scales with the Glasgow Coma
scale. Anaesthesia 59, 34–37, 2004.
5. Servadei F. Coma scales. Lancet 367 (9510), 548–
549, 2006.
6. Ropper AH, O’Rourke D, Kennedy SK. Head posi-
tion, intracranial pressure, and compliance. Neuro-
logy 32 (11), 1288–1291, 1982.
7. Saper CB, Loewy AD, Swanson LW, et al. Direct
hypothalamo-autonomic connections. Brain Res 117
(2), 305–312, 1976.
8. Saper CB. Central autonomic system. In Paxinos G.
ed. The Rat Nervous System. Elsevier Academic
Press, San Diego, pp 761–796, 2004.
9. Rossetti AO, Reichhart MD Bogousslavsky J. Central
Horner’s syndrome with contralateral ataxic hemipa-
resis: a diencephalic alternate syndrome. Neurology
61 (3), 334–338, 2003.
10. Reeves AG, Posner JB. The ciliospinal response in
man. Neurology 19, 1145–1152, 1969.
11. Vassend O, Knardahl S. Cardiovascular responsive-
ness to brief cognitive challenges and pain sensitivity
in women. Eur J Pain 8 (4), 315–324, 2004.
12. Zidan AH, Girvin JP. Effect on the Cushing response
of different rates of expansion of a supratentorial mass.
J Neurosurg 49 (1), 61–70, 1978.
13. Kawahara E, Ikeda S, Miyahara Y, et al. Role of auto-
nomic nervous dysfunction in electrocardio-graphic
abnormalities and cardiac injury in patients with
acute subarachnoid hemorrhage. Circ J 67 (9), 753–
756, 2003.
14. Lorsheyd A, Simmers TA Robles De Medina EO.
The relationship between electrocardiographic ab-
normalities and location of the intracranial aneurysm
in subarachnoid hemorrhage. Pacing Clin Electro-
physiol 26 (8), 1722–1728, 2003.
15. McLaughlin N, Bojanowski MW, Girard F, et al.
Pulmonary edema and cardiac dysfunction following
subarachnoid hemorrhage. Can J Neurol Sci 32 (2),
178–185, 2005.
16. Ferrante L, Artico M, Nardacci B, Fraioli B,
Cosentino F, Fortuna A. Glossopharyngeal neuralgia
with cardiac syncope. Neurosurgery 36, 58–63, 1995.
17. Cole CR, Zuckerman J Levine BD. Carotid sinus
‘‘irritability’’ rather than hypersensitivity: a new name
for an old syndrome? Clin Auton Res 11(2), 109–
113, 2001.
18. Paulson OB, Strandgaard S Edvinsson L. Cerebral
autoregulation. Cerebrovasc Brain Metab Rev 2(2),
161–192, 1990.
19. Strandgaard S, Paulson OB. Regulation of cerebral
blood flow in health and disease. J Cardiovasc Phar-
macol 19 (Suppl 6), S89–S93, 1992.
20. Wahl M, Schilling L. Regulation of cerebral blood
flow—a brief review. Acta Neurochir Suppl (Wien)
59, 3–10, 1993.
21. Schondorf R, Benoit J, Stein R. Cerebral autoreg-
ulation in orthostatic intolerance. Ann N Y Acad Sci
940, 514–526, 2001.
22. Sato A, Sato Y, Uchida S. Regulation of cerebral
cortical blood flow by the basal forebrain cholinergic
fibers and aging. Auton Neurosci 96 (1), 13–19,
2002.
23. Bieger D, Hopkins DA. Viscerotopic representa-
tion of the upper alimentary tract in the medulla
oblongata in the rat: the nucleus ambiguus. J Comp
Neurol 262 (4), 546–562, 1987.
24. Ross CA, Ruggiero DA, Park DH, et al. Tonic
vasomotor control by the rostral ventrolateral me-
dulla: effect of electrical or chemical stimulation
of the area containing C1 adrenaline neurons on
arterial pressure, heart rate, and plasma catechol-
amines and vasopressin. J Neurosci 4(2), 474–494,
1984.
25. Panneton WM, Loewy AD. Projections of the carotid
sinus nerve to the nucleus of the solitary tract in the
cat. Brain Res 191 (1), 239–244, 1980.
26. Ciriello J. Brainstem projections of aortic barorecep-
tor afferent fibers in the rat. Neurosci Lett 36 (1),
37–42, 1983.
27. Ross CA, Ruggiero DA, Reis DJ. Projections from
the nucleus tractus solitarii to the rostral ventro-
lateral medulla. J Comp Neurol 242 (4), 511–534,
1985.
28. Blessing WW, Reis DJ. Inhibitory cardiovascular
function of neurons in the caudal ventrolateral me-
dulla of the rabbit: relationship to the area contain-
ing A1 noradrenergic cells. Brain Res 253 (1–2), 161–
171, 1982.
29. Smith JC, Ellenberger HH, Ballanyi K, et al. Pre-
Botzinger complex: a brainstem region that may gen-
erate respiratory rhythm in mammals. Science 254
(5032), 726–729, 1991.
30. Gray PA, Janczewski WA, Mellen N, et al. Normal
breathing requires preBotzinger complex neuroki-
nin-1 receptor-expressing neurons. Nat Neurosci 4,
927–930, 2001.
31. Wallach JH, Loewy AD. Projections of the aortic
nerve to the nucleus tractus solitarius in the rabbit.
Brain Res 188 (1), 247–251, 1980.
32. Torrealba F, Claps A. The carotid sinus connections:
a WGA-HRP study in the cat. Brain Res 455 (1),
134–143, 1988.
33. Kalia M, Richter D. Rapidly adapting pulmonary
receptor afferents: I. Arborization in the nucleus of
the tractus solitarius. J Comp Neurol 274 (4), 560–
573, 1988.
34. Feldman JL, Ellenberger HH. Central coordination
of respiratory and cardiovascular control in mam-
mals. Annu Rev Physiol 50, 593–606, 1988.
35. Weston MC, Stornetta RL, Guyenet PG. Glutama-
tergic neuronal projections from the marginal
Examination of the Comatose Patient
83
layer of the rostral ventral medulla to the respira-
tory centers in rats. J Comp Neurol 473 (1), 73–85,
2004.
36. Richerson GB. Serotonergic neurons as carbon diox-
ide sensors that maintain pH homeostasis. Nat Rev
Neurosci 5(6), 449–461, 2004.
37. Chamberlin NL, Saper CB. Topographic organiza-
tion of respiratory responses to glutamate microstim-
ulation of the parabrachial nucleus in the rat. J Neuro-
sci 14 (11 Pt 1), 6500–6510, 1994.
38. Chamberlin NL, Saper CB. A brainstem network
mediating apneic reflexes in the rat. J Neurosci 18
(15), 6048–6056, 1998.
39. Meah MS, Gardner WN. Post-hyperventilation ap-
noea in conscious humans. J Physiol 477 (Pt 3), 527–
538, 1994.
40. Jennett S, Ashbridge K, North JB. Post-hyperventi-
lation apnoea in patients with brain damage. J Neurol
Neurosurg Psychiatry 37 (3), 288–296, 1974.
41. Cherniack NS, Longobardo G, Evangelista CJ.
Causes of Cheyne-Stokes respiration. Neurocrit
Care 3(3), 271–279, 2005.
42. Lange RL, Hecht HH. The mechanism of Cheyne-
Stokes respiration. J Clin Invest 41, 42–52, 1962.
43. Murdock DK, Lawless CE, Loeb HS, et al. The
effect of heart transplantation on Cheyne-Stokes
respiration associated with congestive heart failure.
J Heart Transplant 5(4), 336–337, 1986.
44. Hudgel DW, Devadatta P, Quadri M, et al. Mech-
anism of sleep-induced periodic breathing in conva-
lescing stroke patients and healthy elderly subjects.
Chest 104 (5), 1503–1510, 1993.
45. Rubin AE, Gottlieb SH, Gold AR, et al. Elimination
of central sleep apnoea by mitral valvuloplasty: the
role of feedback delay in periodic breathing. Thorax
59 (2), 174–176, 2004.
46. Vespa PM, Bleck TP. Neurogenic pulmonary edema
and other mechanisms of impaired oxygenation after
aneurysmal subarachnoid hemorrhage. Neurocrit
Care 1(2), 157–170, 2004.
47. Simon RP. Neurogenic pulmonary edema. Neurol
Clin 11(2), 309–323, 1993.
48. Tarulli AW, Lim C, Bui JD, et al. Central neuro-
genic hyperventilation: a case report and discussion
of pathophysiology. Arch Neurol 62 (10), 1632–1634,
2005.
49. Shams PN, Waldman A, Plant GT. B cell lymphoma of
the brain stem masquerading as myasthenia. J Neurol
Neurosurg Psychiatry 72, 271–273, 2002.
50. Rodriguez M, Baele PL, Marsh HM, et al. Central
neurogenic hyperventilation in an awake patient with
brainstem astrocytoma. Ann Neurol 11, 625–628,
1982.
51. Siderowf AD, Balcer LJ, Kenyon LC, et al. Cen-
tral neurogenic hyperventilation in an awake patient
with a pontine glioma. Neurology 46, 1160–1162,
1996.
52. Hilaire G, Pasaro R. Genesis and control of the
respiratory rhythm in adult mammals. News Physiol
Sci 18, 23–28, 2003.
53. El Khatib MF, Kiwan RA, Jamaleddine GW. Buspir-
one treatment for apneustic breathing in brain stem
infarct. Respir Care 48, 956–958, 2003.
54. Bassetti C, Aldrich MS, Quint D. Sleep-disordered
breathing in patients with acute supra- and infra-
tentorial strokes. A prospective study of 39 patients.
Stroke 28, 1765–1772, 1997.
55. Pang KP, Terris DJ. Screening for obstructive sleep
apnea: an evidence-based analysis. Am J Otolaryngol
27 (2), 112–118, 2006.
56. Iber C. Sleep-related breathing disorders. Neurol
Clin 23(4), 1045–1057, 2005.
57. Schlaefke ME, Kille JF, Loeschcke HH. Elimination
of central chemosensitivity by coagulation of a bilat-
eral area on the ventral medullary surface in awake
cats. Pflugers Arch 378 (3), 231–241, 1979.
58. Fodstad H. Pacing of the diaphragm to control
breathing in patients with paralysis of central ner-
vous system origin. Stereotact Funct Neurosurg
53 (4), 209–222, 1989.
59. Bogousslavsky J, Khurana R, Deruaz JP, et al. Re-
spiratory failure and unilateral caudal brainstem in-
farction. Ann Neurol 28 (5), 668–673, 1990.
60. Auer RN, Rowlands CG, Perry SF, et al. Multiple
sclerosis with medullary plaques and fatal sleep ap-
nea (Ondine’s curse). Clin Neuropathol 15 (2), 101–
105, 1996.
61. Manconi M, Mondini S, Fabiani A, et al. Anterior
spinal artery syndrome complicated by the Ondine
curse. Arch Neurol 60 (12), 1787–1790, 2003.
62. Polatty RC, Cooper KR. Respiratory failure after
percutaneous cordotomy. South Med J 79 (7), 897–
899, 1986.
63. Amiel J, Laudier B, ttie-Bitach T, et al. Polyalanine
expansion and frameshift mutations of the paired-
like homeobox gene PHOX2B in congenital central
hypoventilation syndrome. Nat Genet 33 (4), 459–
461, 2003.
64. Stankiewicz JA, Pazevic JP. Acquired Ondine’s
curse. Otolaryngol Head Neck Surg 101 (5), 611–
613, 1989.
65. Ezure K, Tanaka I. Convergence of central respira-
tory and locomotor rhythms onto single neurons of
the lateral reticular nucleus. Exp Brain Res 113 (2),
230–242, 1997.
66. Daquin G, Micallef J, Blin O. Yawning. Sleep Med
Rev 5(4), 299–312, 2001.
67. Argiolas A, Melis MR. The neuropharmacology of
yawning. Eur J Pharmacol 343 (1), 1–16, 1998.
68. Launois S, Bizec JL, Whitelaw WA, et al. Hiccup
in adults: an overview. Eur Respir J 6, 563–575,
1993.
69. Straus C, Vasilakos K, Wilson RJ, et al. A phyloge-
netic hypothesis for the origin of hiccough. Bioessays
25, 182–188, 2003.
70. Cersosimo RJ, Brophy MT. Hiccups with high dose
dexamethasone administration—a case report. Can-
cer 82, 412–414, 1998.
71. LeWitt PA, Barton NW, Posner JB. Hiccup with
dexamethasone therapy. Letter to the editor. Ann
Neurol 12, 405–406, 1982.
72. Souadjian JV, Cain JC. Intractable hiccup. Etiologic
factors in 220 cases. Postgrad Med 43, 72–77, 1968.
73. Walker P, Watanabe S, Bruera E. Baclofen, a treat-
ment for chronic hiccup. J Pain Symptom Manage
16, 125–132, 1998.
74. Friedman NL. Hiccups: a treatment review. Phar-
macotherapy 16, 986–995, 1996.
75. Furukawa N, Hatano M, Fukuda H. Glutaminergic
vagal afferents may mediate both retching and gastric
84
Plum and Posner’s Diagnosis of Stupor and Coma
adaptive relaxation in dogs. Auton Neurosci 93 (1–2),
21–30, 2001.
76. Balaban CD. Vestibular autonomic regulation (in-
cluding motion sickness and the mechanism of vom-
iting). Curr Opin Neurol 12 (1), 29–33, 1999.
77. Hornby PJ. Central neurocircuitry associated with
emesis. Am J Med 111 (Suppl 8A), 106S–112S, 2001.
78. Yamamoto H, Kishi T, Lee CE, et al. Glucagon-like
peptide-1-responsive catecholamine neurons in the
area postrema link peripheral glucagon-like peptide-
1 with central autonomic control sites. J Neurosci
23(7), 2939–2946, 2003.
79. Chen CJ, Scheufele M, Sheth M, et al. Isolated
relative afferent pupillary defect secondary to con-
tralateral midbrain compression. Arch Neurol 61,
1451–1453, 2004.
80. Hornblass A. Pupillary dilatation in fractures of the
floor of the orbit. Ophthalmic Surg 10(11), 44–46,
1979.
81. Antonio-Santos AA, Santo RN, Eggenberger ER.
Pharmacological testing of anisocoria. Expert Opin
Pharmacother 6 (12), 2007–2013, 2005.
82. McLeod JG, Tuck RR. Disorders of the autonomic
nervous system: part 2. Investigation and treatment.
Ann Neurol 21(6), 519–529, 1987.
83. Zhang YH, Lu J, Elmquist JK, et al. Lipopolysac-
charide activates specific populations of hypotha-
lamic and brainstem neurons that project to the
spinal cord. J Neurosci 20 (17), 6578–6586, 2000.
84. Llewellyn-Smith IJ, Martin CL, Marcus JN, et al.
Orexin-immunoreactive inputs to rat sympathetic
preganglionic neurons. Neurosci Lett 351 (2), 115–
119, 2003.
85. Estabrooke IV, McCarthy MT, Ko E, et al. Fos
expression in orexin neurons varies with behavioral
state. J Neurosci 21(5), 1656–1662, 2001.
86. Loewy AD, Araujo JC, Kerr FW. Pupillodilator path-
ways in the brain stem of the cat: anatomical and
electrophysiological identification of a central auto-
nomic pathway. Brain Res 60 (1), 65–91, 1973.
87. Burde RM, Loewy AD. Central origin of oculomotor
parasympathetic neurons in the monkey. Brain Res
198 (2), 434–439, 1980.
88. Burde RM. Disparate visceral neuronal pools sub-
serve spinal cord and ciliary ganglion in the monkey:
a double labeling approach. Brain Res 440 (1), 177–
180, 1988.
89. Gooley JJ, Lu J, Fischer D, et al. A broad role for
melanopsin in nonvisual photoreception. J Neurosci
23(18), 7093–7106, 2003.
90. Buttner-Ennever JA, Cohen B, Horn AK, et al.
Pretectal projections to the oculomotor complex of
the monkey and their role in eye movements. J Comp
Neurol 366 (2), 348–359, 1996.
91. Jampel RS. Convergence, divergence, pupillary reac-
tions and accommodation of the eyes from faradic
stimulation of the macaque brain. J Comp Neurol
115, 371–399, 1960.
92. Kerr FW, Hallowell OW. Location of the pu-
pillomotor and accommodation fibers in the oculo-
motor nerve: experimental observations on paralytic
mydriasis. J Neurol Neurosurg Psychiatry 27, 473–
481, 1964.
93. Leigh RJ, Zee DS. The Neurology of Eye Movements,
4th ed. New York: Oxford University Press, 2006.
94. Hanson RA, Ghosh S, Gonzalez-Gomez I, et al.
Abducens length and vulnerability? Neurology 62
(1), 33–36, 2004.
95. Zee DS. Brain stem and cerebellar deficits in eye
movement control. Trans Ophthalmol Soc U K 105
(Pt 5), 599–605, 1986.
96. Henn V. Pathophysiology of rapid eye movements
in the horizontal, vertical and torsional directions.
Baillieres Clin Neurol 1(2), 373–391, 1992.
97. Sparks DL, Mays LE. Signal transformations re-
quired for the generation of saccadic eye move-
ments. Annu Rev Neurosci 13, 309–336, 1990.
98. Lewis RF, Zee DS. Ocular motor disorders associ-
ated with cerebellar lesions: pathophysiology and top-
ical localization. Rev Neurol (Paris) 149 (11), 665–
677, 1993.
99. Buettner UW, Zee DS. Vestibular testing in coma-
tose patients. Arch Neurol 46 (5), 561–563, 1989.
100. Helmchen C, Rambold H, Kempermann U, et al.
Localizing value of torsional nystagmus in small mid-
brain lesions. Neurology 59 (12), 1956–1964, 2002.
101. Krauzlis RJ. Recasting the smooth pursuit eye move-
ment system. J Neurophysiol 91 (2), 591–603, 2004.
102. Leichnetz GR. An anterogradely-labeled prefrontal
cortico-oculomotor pathway in the monkey demon-
strated with HRP gel and TMB neurohistochemis-
try. Brain Res 198 (2), 440–445, 1980.
103. Barton JJ, Simpson T, Kiriakopoulos E, et al. Func-
tional MRI of lateral occipitotemporal cortex during
pursuit and motion perception. Ann Neurol 40 (3),
387–398, 1996.
104. Goldberg ME. The control of gaze. In: Kandel ER,
Schwartz JH, Jessel JH, eds. Principles of Neurosci-
ence, 4th ed. New York: McGraw Hill, pp 782–800,
2000.
105. Cogan DG, Chu FC, Reingold DB. Ocular signs of
cerebellar disease. Arch Ophthalmol 100 (5), 755–
760, 1982.
106. Caplan LR. Ptosis. J Neurol Neurosurg Psychiatry
37 (1), 1–7, 1974.
107. Hackley SA, Johnson LN. Distinct early and late
subcomponents of the photic blink reflex: response
characteristics in patients with retrogeniculate le-
sions. Psychophysiology 33, 239–251, 1996.
108. Liu GT, Ronthal M. Reflex blink to visual threat.
J Clin Neuroophthalmol 12, 47–56, 1992.
109. Wijdicks EF, Bamlet WR, Maramattom BV, et al.
Validation of a new coma scale: the FOUR score.
Ann Neurol 58 (4), 585–593, 2005.
110. Pullicino PM, Jacobs L, McCall WD Jr, et al. Spon-
taneous palpebromandibular synkinesia: a localizing
clinical sign. Ann Neurol 35 (2), 222–228, 1994.
111. Roberts TA, Jenkyn LR, Reeves AG. On the notion
of doll’s eyes. Arch Neurol 41, 1242–1243, 1984.
112. Schubert MC, Das V, Tusa RJ, et al. Cervico-ocular
reflex in normal subjects and patients with unilateral
vestibular hypofunction. Otol Neurotol 25 (1), 65–
71, 2004.
113. Schlosser HG, Unterberg A, Clarke A. Using video-
oculography for galvanic evoked vestibulo-ocular
monitoring in comatose patients. J Neurosci Meth-
ods 145 (1–2), 127–131, 2005.
114. Brandt TH, Dieterich M. Different types of skew
deviation. J Neurol Neurosurg Psychiatry 54, 549–
550, 1991.
Examination of the Comatose Patient
85
115. Fisher CM. Some neuro-ophthalmological observa-
tions. J Neurol Neurosurg Psychiatry 30 (5), 383–
392, 1967.
116. Chung CS, Caplan LR, Yamamoto Y, et al. Striato-
capsular haemorrhage. Brain 123 (Pt 9), 1850–1862,
2000.
117. Baloh RW, Furman JM, Yee RD. Dorsal midbrain
syndrome: clinical and oculographic findings. Neu-
rology 35 (1), 54–60, 1985.
118. Choi KD, Jung DS, Kim JS. Specificity of ‘‘peering
at the tip of the nose’’ for a diagnosis of thalamic
hemorrhage. Arch Neurol 61, 417–422, 2004.
119. Litvan I, Jankovic J, Goetz CG, et al. Accuracy of the
clinical diagnosis of postencephalitic parkinsonism: a
clinicopathologic study. Eur J Neurol 5 (5), 451–457,
1998.
120. Jhee SS, Zarotsky V, Mohaupt SM, et al. Delayed
onset of oculogyric crisis and torticollis with intra-
muscular haloperidol. Ann Pharmacother 37 (10),
1434–1437, 2003.
121. Pannullo SC, Reich JB, Krol G, et al. MRI changes
in intracranial hypotension. Neurology 43, 919–926,
1993.
122. Keane JR. Alternating skew deviation: 47 patients.
Neurology 35 (5), 725–728, 1985.
123. Brandt TH, Dieterich M. Different types of skew de-
viation. J Neurol Neurosurg Psychiatry 54 (6), 549–
550, 1991.
124. Keane JR. Ocular skew deviation. Analysis of 100
cases. Arch Neurol 32 (3), 185–190, 1975.
125. Smith JL, David NJ, Klintworth G. Skew deviation.
Neurology 14, 96–105, 1964.
126. Johkura K, Komiyama A, Tobita M, et al. Saccadic
ping-pong gaze. J Neuroophthalmol 18, 43–46, 1998.
127. Daroff RB, Hoyt WF. Supranuclear disorders of oc-
ular control systems in man: clinical, anatomical and
physiological correlations. In: Bach-y-Rita P, Collins
CC, Hyde JE, eds. The Control of Eye Movements.
New York: Academic Press, pp 175–235, 1971.
128. Ochs AL, Stark L, Hoyt WF, et al. Opposed
adducting saccades in convergence-retraction nys-
tagmus: a patient with sylvian aqueduct syndrome.
Brain 102 (3), 497–508, 1979.
129. Fischer CM. Ocular bobbing. Arch Neurol 11, 543–
546, 1964.
130. Rosenberg ML. Spontaneous vertical eye move-
ments in coma. Ann Neurol 20 (5), 635–637, 1986.
131. Herishanu YO, Abarbanel JM, Frisher S, et al.
Spontaneous vertical eye movements associated with
pontine lesions. Isr J Med Sci 27 (6), 320–324, 1991.
132. Lourie H. Seesaw nystagmus. Case report elucidat-
ing the mechanism. Arch Neurol 9, 531–533, 1963.
133. Sano K, Sekino H, Tsukamoto Y, et al. Stimulation
and destruction of the region of the interstitial
nucleus in cases of torticollis and see-saw nystagmus.
Dostları ilə paylaş: |