110
RAQAMLI TEXNOLOGIYALARNING
YANGI
O‘ZBEKISTON
RIVOJIGA
TA’SIRI
Xalqaro ilmiy-amaliy konferensiyasi
бўлганлиги учун ҳар бир система биттадан ечимга эга. Бундан эса (11)
система иккита
ечимга эга эканлиги келиб чиқади. Демак,
B
E
ва
A
E
эллипсларнинг иккита умумий нуқтаси
бор экан.
1
2
1
2
A
A
B
B
F F
F F
ва
A
B
a
a
=
бўлганлиги сабабли бу эллипсларнинг умумий нуқтаси
катта ўқларидаги учлари бўлади.
1
2
1
2
A
A
B
B
F F
F F
бўлгани учун эса
B
E
эллипс,
A
E
эллипснинг ичида жойлашиб қолади(1
-
расм). Бу
A
B
E
E
эканлигини англатади.
1-
расм
Агар
A
B
a
a
=
бўлиб,
1
2
1
2
A
A
B
B
F F
F F
муносабат бажарилса, (2) муносабат бажарилмай
қолади ва
A
B
E
E
айирма бўш тўпламдан иборат бўлади.
Агар
A
B
a
a
бўлиб,
( )
( )
2
2
2
2
1
2
1
2
A
A
A
B
B
B
a
F F
a
F F
−
=
−
муносабат бажарилса, (11)
системадаги ҳар иккала тенгламаларнинг иккинчи қўшилувчилари бир ҳил бўлиб қолади
ва
(
)
(
)
( )
(
)
(
)
( )
2
2
1
1
1
1
1
2
1
2
2
2
2
cos
sin
2
cos
sin
0,
4
4
B
A
x
y
x
y
a
a
+
−
−
+
−
−
−
=
(19)
тенглик ўринли бўлади.
A
B
a
a
бўлгани учун (19)
тенглама
1
1
1
2
cos
sin
,
2
x
y
−
+
=
(20)
113
RAQAMLI TEXNOLOGIYALARNING
YANGI
O‘ZBEKISTON
RIVOJIGA
TA’SIRI
Xalqaro ilmiy-amaliy konferensiyasi
(11) система ечимга эга бўлмади дегани
B
E
ва
A
E
эллипсларнинг умумий нуқтаси
мавжуд эмаслигини билдиради. Бунда (1) ва (2) шартлар ўринли бўлгани учун
эллипсларнинг вазияти 5
-
расмдаги каби бўлади ва
A
B
E
E
айирма бўш бўлмайди. Теорема
тўлиқ исботланди.
5-
расм
(1) ,(2) шартлар ва юқоридаги теорема текислиеда фокуслари ва катта ўқи орқали
берилган эллипсларнинг Минковский айирмаси бўш ёки бўш эмаслигини аниқлай олади,
лекин айирма натижасида ҳосил бўлган тўпламни топиш имконини бермайди.
ФОЙДАЛАНИЛГАН АДАБИЁТЛАР
:
1.
L.S.Pontryagin, On Linear Differential Games I.
Dokl. Akad. Nauk SSSR
, 174(6)(1967) 1278-
1280.
2.
L.S.Pontryagin, On Linear Differential Games II.
Dokl. Akad. Nauk SSSR
, 175(4)(1967) 764-
766.
3.
M.Mamatov, J.Nuritdinov, Some Properties of the Sum and
Geometric Differences of
Minkowski.
Journal of Applied Mathematics and Physics
, 8 (2020) 2241-2255.
4.
G. E.Ivanov, Weakly Convex Sets and Their Properties
. Math. Notes
, 79(1)(2006) 55-78.
5.
S.Tomiczkova, Area of the Minkowski sum of two convex sets.
Proceedings of Conference on
geometry and computer graphics
, Janov nad Nisou 2005.
6.
Y.Martinez-Maure, Geometric Study of Minkowski Differences of Plane Convex Bodies.
Canad. J. Math
. 58 (3) (2006) 600-624.
7.
J.T.Nuritdinov. On the minkowski difference of lines and planes //
Modern problems of
applied mathematics and information technologies
. Al-Khwarizmi 15-17 November, 2021, Fergana,
Uzbekistan. pp 252.
114
RAQAMLI TEXNOLOGIYALARNING
YANGI
O‘ZBEKISTON
RIVOJIGA
TA’SIRI
Xalqaro ilmiy-amaliy konferensiyasi
TEACHING PHYSICS BASED ON MODERN TECHNOLOGIES
Adashaliyeva FeruzaBonu
Farg’ona politexnika instituti talabasi
feruzabonuadashaliyeva@gmail.com
Annotation:
This article describes the teaching of physics and the problems that arise in it.
It is clear that we will achieve new results as a result of studying and analyzing the problems. It was
suggested that the development of pedagogical technologies should be effective in education and
give the expected results.
Keywords:
physical laws, laboratory work, diagnostics, technological approach, modeling,
virtual laboratory.
Nowadays, physics is a general education subject. It serves as the basis for a number of
special disciplines, so it is important for students to know not only
the laws of physics and
phenomena, but also the ability to apply them in solving practical and experimental problems.
However, in particular, technological hands-on activities are not included in the curriculum, so it is
very difficult to teach students to use physical knowledge to solve problems using traditional forms
of education. Another problem in teaching physics is that the formal completion of laboratory work
by students is reduced to the repetition of operations specified by the teacher or described in the
instruction, which does not provide the level of preparation required by the educational standards.
The use of modern pedagogical technologies will help to solve this and a number of other tasks.
However, due to differences in the goals, objectives and system of teaching secondary school
students and university students, there is a need to theoretically substantiate and test in practice
the effectiveness of the use of modern educational technologies already established in teaching
physics. is born. at a technical university. To do this, you need:
•
Substantiate the need and possibilities of using modern educational technologies in teaching
physics at the Technical University.
•
Coordination of didactic capabilities of modern educational technologies and normative
requirements for the organization of the educational process.
•
Creation of didactic support of modern educational technologies
in teaching physics to
students of technical universities.
•
To test the effectiveness of the use of modern educational technologies in teaching physics
to secondary school students.