Umumiy tenglama bilan berilgan ikkinchi tartibli chiziqlarni aniqlash va sinflarga ajratish.
𝑥′ = 𝑥 + 𝑎
{𝑦′ = 𝑦 + 𝑎
parallel ko‘chirish formulasi.
𝑥 = 𝑥′𝑐𝑜𝑠𝛼 − 𝑦′𝑠𝑖𝑛𝛼
burish formulasi.
{
𝑦 = 𝑥
′𝑠𝑖𝑛𝛼 + 𝑦
′𝑐𝑜𝑠𝛼
𝑥 = 𝑥 ′𝑐𝑜𝑠𝛼 − 𝑦 ′𝑠𝑖𝑛𝛼 + 𝑎
{𝑦 = 𝑦 ′𝑐𝑜𝑠𝛼 + 𝑥 ′𝑠𝑖𝑛𝛼 + 𝑏
parallel ko‘chirish va burish birgalikda harakat deyiladi.
𝑎 11𝑥 2 + 𝑎 22𝑦 2 + 2𝑎 10𝑥 + 2𝑎 20𝑦 + 2𝑎 12𝑥𝑦 + 𝑎 00 = 0
shu ifoda bilan berilgan tenglama ikkinchi tartibli chiziqning umumiy
tenglamasi deyiladi.
Umumiy tenglama bilan berilgan ikkinchi tartibli chiziqni qanday chiziq ekanligini aniqlash uchun quyidagi ishlarni bajaramiz.
𝑥 ′ = 𝑥 + 𝑎
{𝑦 ′ = 𝑦 + 𝑎
𝑎 11(𝑥 ′ + 𝑎) 2 + 𝑎 22(𝑦 ′ + 𝑏) 2 + 2𝑎 10(𝑥 ′ + 𝑎 ) + 2𝑎 20(𝑦 ′ + 𝑏 ) +
22
10
+2𝑎 12(𝑥 ′ + 𝑎 )(𝑦 ′ + 𝑏 ) + 𝑎 00 = 0 ⟹
𝑎11
(𝑥′2 + 2𝑎𝑥′ + 𝑎2) + 𝑎
(𝑦′2 + 2𝑏𝑦′ + 𝑏2) + (2𝑎
𝑥′ + 2𝑎𝑎10) +
+2𝑎20𝑦′ + 2𝑎20𝑏 + 2𝑎12(𝑥′𝑦′ + 𝑎𝑦′ + 𝑏𝑥′ + 𝑎𝑏) + 𝑎00 = 0 ⟹
𝑎11𝑥′2 + 2𝑎𝑎11𝑥′ + 𝑎2𝑎11 + 𝑎22𝑦′2 + 2𝑦′𝑏𝑎22 + 𝑎22𝑏2 +
+2𝑎10𝑥′ + 2𝑎𝑎10 + 2𝑎20𝑦′ + 2𝑎20𝑏 + 2𝑎12𝑥′𝑦′ +
+2𝑎12𝑎𝑦′ + 2𝑎12𝑏𝑥′ + 2𝑎12𝑎𝑏 + 𝑎00 = 0
{2𝑎11𝑎 + 2𝑎12𝑏 = −2𝑎10 2𝑎22𝑏 + 2𝑎12𝑎 = −2𝑎20
𝑎11𝑥′2
+ 𝑎22𝑦′2
𝑥 = 𝑥′′𝑐𝑜𝑠𝛼 − 𝑦′′𝑠𝑖𝑛𝛼
+ 𝐴00 = 0 ⟹ {𝑦 = 𝑥′′𝑠𝑖𝑛𝛼 + 𝑦′′𝑐𝑜𝑠𝛼
kelib chiqadi.
𝑎11(𝑥′′𝑐𝑜𝑠𝛼 − 𝑦′′𝑠𝑖𝑛𝛼)2 + 𝑎22(𝑥′′𝑠𝑖𝑛𝛼 + 𝑦′′𝑐𝑜𝑠𝛼)2 +
+2𝑎12(𝑥′′𝑐𝑜𝑠𝛼 − 𝑦′′𝑠𝑖𝑛𝛼)(𝑥′′𝑠𝑖𝑛𝛼 + 𝑦′′𝑐𝑜𝑠𝛼) + 𝐴00 = 0
𝑎11(𝑥′′2𝑐𝑜𝑠2𝛼 − 2𝑎11𝑥′′𝑐𝑜𝑠𝛼𝑦′′𝑠𝑖𝑛𝛼 + 𝑦′′2𝑠𝑖𝑛2𝛼) +
+𝑎22(𝑥′′2𝑠𝑖𝑛2𝛼 + 2𝑥′′𝑠𝑖𝑛𝛼𝑦′′𝑐𝑜𝑠𝛼 + 𝑦′′2𝑐𝑜𝑠2𝛼) + 𝐴00 = 0 ⟹
𝑎11𝑥′′2𝑐𝑜𝑠2𝛼 − 2𝑎11𝑥′′𝑐𝑜𝑠𝛼𝑦′′𝑠𝑖𝑛𝛼 + 𝑎11𝑦′′2𝑠𝑖𝑛2𝛼 +
+𝑎22𝑦′′2𝑐𝑜𝑠2𝛼 + 2𝑎13𝑥′′2𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 + 2𝑎12𝑥′′2𝑦′′2𝑐𝑜𝑠2𝛼 −
−2𝑎12𝑥′′𝑦′′𝑠𝑖𝑛2𝛼 − 2𝑎12𝑦′′2𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 + 𝐴00 = 0 ⟹
2
(𝑎11𝑐𝑜𝑠2𝛼 + 𝑎22𝑠𝑖𝑛2𝛼 + 2𝑎12𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼)𝑥′′ +
2
+(𝑎11𝑠𝑖𝑛2𝛼 + 𝑎22𝑐𝑜𝑠2𝛼 − 2𝑎12𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼)𝑦′′ +
+ (−2𝑎 11𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 + 2𝑎 22𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 + 2𝑎 12𝑐𝑜𝑠 2𝛼
− 2𝑎 12𝑠𝑖𝑛 2𝛼 )𝑥 ′′𝑦 ′′ + 𝐴 00 = 0 (𝑎 22 − 𝑎 11)𝑠𝑖𝑛2𝛼 + 2𝑎 12𝑐𝑜𝑠2𝛼 = 0 ⟹
𝑡𝑔2𝛼 = 2𝑎12
𝑎11 − 𝑎22
(5.42)
𝐴 11𝑥 ′2 + 𝐴 22𝑦 ′2 + 𝐴 00 = 0 tenglamani xususiy hollarini qaraymiz:
1) 𝐴 11 > 0, 𝐴 22 > 0, 𝐴 00 < 0 bo‘lsa, ellips;
2) 𝐴 11 < 0, 𝐴 22 < 0, 𝐴 00 > 0 bo‘lsa, ellips;
3) 𝐴 11 𝐴 22 < 0, 𝐴 00 > 0 bo‘lsa, giperbola;
4) 𝐴 11 𝐴 22 < 0, 𝐴 00 < 0 bo‘lsa, giperbola;
5) 𝐴 11 𝐴 22 < 0, 𝐴 00 = 0 bo‘lsa, nuqta;
6) 𝐴 11 = 0, 𝐴 22 𝐴 00 < 0, 𝐴 00 > 0 bo‘lsa, parallel to‘g‘ri chiziqlar hosil bo‘ladi.
1-Misоl. Quyidagi tenglamaning geometrik ma’nosini tekshirib, uning kanonik tenglamasi tuzilsin:
5𝑥 2 + 4𝑥𝑦 + 8𝑦 2 − 32𝑥 − 56𝑦 + 80 = 0.
Yechish: Egri chiziqning jinsini aniqlash uchun ∆ va 𝑀 ni hisoblashga to‘g‘ri keladi:
5 2 − 16
∆= |
2 8 − 28 | = −1296, 𝐴 ∙ ∆< 0.
−16 − 28 80
𝑀 = 𝐵2 − 𝐴𝐶 = 4 − 5 ∙ 8 = −36 < 0.
Demak, berilgan tenglama haqiqiy ellipsdan iborat. Uning kanonik tenglamasining ko‘rinishi:
𝐴1
𝑥2 + 𝐶1
𝑦2 = ∆ ,
𝑀
𝐴 1
1
=
2
= 1 [𝐴 + 𝐶 + √ (𝐴 − 𝐶 )2 + 4𝐵 2]=
2
[5 + 8 + √(5 − 8)2 + 4 ∙ 22] = 9;
1
𝐶1 =
1
[𝐴 + 𝐶 − √(𝐴 − 𝐶)2 + 4𝐵2] =
2
= [5 + 8 − √(5 − 8)2 + 4 ∙ 22] = 4;
2
∆ −1296
=
𝑀 −36
= 36.
Demak, ellipsning kanonik tenglamasi
9𝑥2 + 4𝑦2 = 36
2-Misоl. 𝑂𝑥 o‘qi parabolaning simmetriya o‘qi bo‘lib, uning uchi
koordinatalar boshida yotadi. Parabola uchidan fokusigacha bo‘lgan masofa 4 birlikka tеng. Parabola va uning direktrisasi tenglamasini toping.
Yechish: Dastlab, masala shartiga asosan, parabolaning 𝑝
parametrini topamiz:
|𝑂𝐹 | = 4 ⟹ 𝑝/2 = 4 ⟹ 𝑝 = 8.
Unda, (5.39) formulaga asosan, parabola tenglamasini topamiz:
𝑦 2 = 2𝑝𝑥 ⟹ 𝑦 2 = 2 ∙ 8𝑥 = 16𝑥.
Bu yerdan direktrisa tenglamasi 𝑥 = −𝑝/2 ⟹ 𝑥 = −4 ekanligini ko‘ramiz.
Shuni ta’kidlab o‘tish kerakki, 𝑦 = 𝑎𝑥 2 + 𝑏𝑥 + 𝑐 (𝑎 ≠ 0) kvadrat uchhadning grafigi uchi koordinatalari
x0 b ,
2 a
4ac b2 0 4a
bo‘lgan 𝑀0(𝑥0; 𝑦0) nuqtada, simmetriya o‘qi esa 𝑂𝑦 o‘qiga parallel va
𝑥 = −𝑏/2𝑎 tenglamaga ega bo‘lgan vertikal to‘g‘ri chiziqdan tashkil
topgan paraboladan iboratdir. Agar 𝑎 > 0 bo‘lsa, parabola yuqoriga,
𝑎 < 0 bo‘lsa, pastga yo‘nalgan bo‘ladi.
Mustaqil yechish uchun topshiriqlar.
Quyidаgi gipеrbоlаlаrning tеnglаmаlаri sоddа shаklgа kеltirilsin:
1) 9𝑥2 − 25𝑦2 − 18𝑥 − 100𝑦 − 316 = 0;
2) 5𝑥2 − 6𝑦2 + 10𝑥 − 12𝑦 − 31 = 0;
3) 𝑥2 − 4𝑦2 + 6𝑥 + 5 = 0.
Mаrkаzlаrining kооrdinаtаlаri vа o‘qlаri tоpilsin.
Quyidagi tenglamalar bilan qanday egri chiziqlar berilganligi tekshirilsin:
1) 𝑥2 − 2𝑥𝑦 + 2𝑦2 − 4𝑥 − 6𝑦 + 3 = 0;
2) 𝑥2 − 2𝑥𝑦 − 2𝑦2 − 4𝑥 − 6𝑦 + 3 = 0;
3) 𝑥2 − 2𝑥𝑦 + 𝑦2 − 4𝑥 − 6𝑦 + 3 = 0;
4) 𝑥2 − 2𝑥𝑦 + 2𝑦2 − 4𝑥 − 6𝑦 + 29 = 0;
5) 𝑥2 − 2𝑥𝑦 − 2𝑦2 − 4𝑥 − 6𝑦 − 13 = 0.
3
Quyidagi egri chiziqlarning turlari aniqlansin:
1) 𝑥2 + 6𝑥𝑦 + 𝑦2 + 6𝑥 + 2𝑦 − 1 = 0;
2) 3𝑥2 − 2𝑥𝑦 + 3𝑦2 + 4𝑥 + 4𝑦 − 4 = 0;
3) 𝑥2 − 4𝑥𝑦 + 3𝑦2 + 2𝑥 − 2𝑦 = 0;
4) 𝑦2 + 5𝑥𝑦 − 14𝑥2 = 0;
5) 𝑥2 − 𝑥𝑦 − 𝑦2 − 𝑥 − 𝑦 = 0.
Berilgan tenglamalarning chap tomonlarini ko‘paytuvchilarga ajratishdan foydalanib, tenglamalarning geometrik ma’nosi ko‘rsatilsin:
1) 𝑥𝑦 − 𝑏𝑥 − 𝑎𝑦 + 𝑎𝑏 = 0;
2) 𝑥2 − 2𝑥𝑦 + 5𝑥 = 0;
3) 𝑥2 − 4𝑥𝑦 + 4𝑦2 = 0;
4) 9𝑥2 + 30𝑥𝑦 + 25𝑦2 = 0;
5) 4𝑥2 − 12𝑥𝑦 + 9𝑦2 − 25 = 0.
5.1.5. 𝑦2 − 𝑥𝑦 − 5𝑥 + 7𝑦 + 10 = 0 tenglamaning ikki (qo‘sh) to‘g‘ri chiziqni ifodalashi tekshirilsin va bu to‘g‘ri chiziqlardan har birining tenglamasi topilsin.
Quyidagi tenglama bilan berilgan ikkita to‘g‘ri chiziqdan har birining tenglamasi topilsin:
1) 21𝑥2 + 𝑥𝑦 − 10𝑦2 = 0;
2) 𝑥2 + 2𝑥𝑦 + 𝑦2 + 2𝑥 + 2𝑦 − 4 = 0;
3) 𝑦2 − 4𝑥𝑦 − 5𝑦2 + 5𝑥 − 𝑦 = 0;
4) 4𝑥2 − 4𝑥𝑦 + 𝑦2 + 12𝑥 − 6𝑦 + 9 = 0.
Egri chiziqlar tekshirilsin:
1) 2𝑥2 + 3𝑥𝑦 − 5𝑦2 = 0;
2) 𝑥2 + 4𝑥𝑦 + 4𝑦2 = 0;
3) 10𝑥2 − 7𝑥𝑦 + 𝑦2 = 0;
4) 5𝑥2 − 4𝑥𝑦 + 𝑦2 = 0.
Invariantlardan foydalanib, quyidagi egri chiziq tenglamalari sodda shaklga keltirilsin:
1) 𝑥2 + 2𝑥𝑦 − 𝑦2 + 8𝑥 + 4𝑦 − 8 = 0;
2) 7𝑥2 − 24𝑥𝑦 − 38𝑥 + 24𝑦 + 175 = 0;
3) 5𝑥2 + 8𝑥𝑦 + 5𝑦2 − 18𝑥 − 18𝑦 + 9 = 0;
4) 5𝑥2 + 12𝑥𝑦 − 22𝑥 − 12𝑦 − 19 = 0;
5) 6𝑥𝑦 + 8𝑦2 − 12𝑥 − 26𝑦 + 11 = 0.
Bu egri chiziqlarning hammasi to‘g‘ri burchakli koordinatalar sistemasiga nisbatan berilgan.
Invariantlardan foydalanib, quyidagi parabolalarning tenglamalari soddalashtirilsin:
1) 𝑥2 − 2𝑥𝑦 + 𝑦2 − 10𝑥 − 6𝑦 + 25 = 0;
2) 4𝑥2 − 4𝑥𝑦 + 𝑦2 − 2𝑥 − 14𝑦 + 7 = 0;
3) 𝑥2 − 2𝑥𝑦 + 𝑦2 − 𝑥 − 2𝑦 + 3 = 0;
4) 4𝑥2 − 4𝑥𝑦 + 𝑦2 − 𝑥 − 2 = 0.
𝜔 = 𝜋
2
bo‘lgan hol uchun.
Quyidagi egri chiziqlarning tenglamalari soddalashtirilsin:
1) 𝑥 2 − 3𝑥𝑦 + 𝑦 2 + 1 = 0, 𝜔 = 60 0;
2) 2𝑥 2 + 2𝑦 2 − 2𝑥 − 6𝑦 + 1 = 0, 𝜔 = 60 0;
3) 4𝑥 2 − 4𝑥𝑦 + 𝑦 2 − 4𝑥 − 4𝑦 + 7 = 0, 𝜔 = 120 0.
5.1.11. Invariantlardan foydalanib, 8𝑦 2 + 6𝑥𝑦 − 12𝑥 − 26𝑦 + 11 = 0
giperbolaning asimptotalariga nisbatan tenglamasi yozilsin. 𝜔 = 90 0.
To‘g‘ri burchakli koordinatalar sistemasiga nisbatan quyidagi tenglamalar bilan berilgan giperbolalarning asimptotalariga nisbatan yozilgan tenglamasi topilsin:
1) 2𝑥 2 + 3𝑥𝑦 − 2𝑦 2 − 8𝑥 − 11𝑦 = 0;
2) 4𝑥 2 + 2𝑥𝑦 − 𝑦 2 + 6𝑥 + 2𝑦 + 3 = 0;
3) 𝑦2 − 2𝑥𝑦 − 4𝑥 − 2𝑦 − 2 = 0.
Biror to‘g‘ri burchakli koordinatalar sistemasiga nisbatan egri chiziq 5𝑥2 + 2𝑥𝑦 − 22𝑥 − 12𝑦 − 19 = 0 tenglama bilan ifodalanadi. Bu egri chiziqning o‘z uchiga nisbatan tenglamasi topilsin.
Quyidagi tenglamalarning har biri ellipsni ifodalasa, uning markazi bo‘lgan С nuqtaning koordinatasi, yarim o‘qi, ekssentrisiteti va direktrisasi tenglamalarini tuzing:
1) 5𝑥2 + 9𝑦2 − 30𝑥 + 18𝑦 + 9 = 0;
2) 16𝑥2 + 25𝑦2 + 32𝑥 − 100𝑦 − 284 = 0;
3) 4𝑥2 + 3𝑦2 − 8𝑥 + 12𝑦 − 32 = 0.
Quyidagi tenglamalar giperbola hosil qilishini tekshirib va uning markazi bo‘lgan C nuqtaning koordinatasini, yarim o‘qlarini, ekssentrisitetini, asimptota va direktrisa tenglamalarini tuzing:
1) 16𝑥2 − 9𝑦2 − 64𝑥 − 54𝑦 − 161 = 0;
2) 9𝑥2 − 16𝑦2 + 90𝑥 + 32𝑦 − 367 = 0;
3) 16𝑥2 − 9𝑦2 − 64𝑥 − 18𝑦 + 199 = 0.
Quyidagi chiziqlardan qaysilari: 1) yagona markazga; 2) ko‘p markazlarga; 3) markazga ega emasligini aniqlang.
1) 3𝑥2 − 4𝑥𝑦 − 2𝑦2 + 3𝑥 − 12𝑦 − 7 = 0;
2) 4𝑥2 + 5𝑥𝑦 + 3𝑦2 − 𝑥 + 9𝑦 − 12 = 0;
3) 4𝑥2 − 4𝑥𝑦 + 𝑦2 − 6𝑥 + 8𝑦 + 13 = 0;
4) 4𝑥2 − 4𝑥𝑦 + 𝑦2 − 12𝑥 + 6𝑦 − 11 = 0;
5) 𝑥2 − 2𝑥𝑦 + 4𝑦2 + 5𝑥 − 7𝑦 + 12 = 0;
6) 𝑥2 − 2𝑥𝑦 + 𝑦2 − 6𝑥 + 6𝑦 − 3 = 0;
7) 𝑥2 − 20𝑥𝑦 + 25𝑦2 − 14𝑥 + 2𝑦 − 15 = 0;
8) 4𝑥2 − 6𝑥𝑦 − 9𝑦2 + 3𝑥 − 7𝑦 + 12 = 0.
Quyidagi berilgan chiziqlar markazga ega bo‘lsa, ularning markaziy nuqtalarini toping:
1) 3𝑥2 + 5𝑥𝑦 + 𝑦2 − 8𝑥 − 11𝑦 − 7 = 0;
2) 5𝑥2 + 4𝑥𝑦 + 2𝑦2 + 20𝑥 + 20𝑦 − 18 = 0;
3) 9𝑥2 − 4𝑥𝑦 − 7𝑦2 − 12 = 0;
4) 2𝑥2 − 6𝑥𝑦 + 5𝑦2 + 22𝑥 − 36𝑦 + 11 = 0.
Quyidagi har bir chiziqning ko‘p markazli bo‘lishini tekshirib, ularning har biri uchun geometrik markazini aniqlaydigan tenglamasini tuzing:
1) 𝑥2 − 6𝑥𝑦 + 9𝑦2 − 12𝑥 + 36𝑦 + 20 = 0;
2) 4𝑥2 + 4𝑥𝑦 + 𝑦2 − 8𝑥 − 4𝑦 − 21 = 0;
3) 25𝑥2 − 10𝑥𝑦 + 𝑦2 + 40𝑥 − 8𝑦 + 7 = 0.
Quyidagi tenglamalar markaziy chiziqni ifodalashini tekshirib, ularning har birini koordinata boshiga ko‘chiruvchi tenglamasini tuzing:
1) 3𝑥2 − 6𝑥𝑦 + 2𝑦2 − 4𝑥 + 2𝑦 + 1 = 0;
2) 6𝑥2 + 4𝑥𝑦 + 𝑦2 + 4𝑥 − 2𝑦 + 2 = 0;
3) 4𝑥2 + 6𝑥𝑦 + 𝑦2 − 10𝑥 − 10 = 0;
4) 4𝑥2 + 2𝑥𝑦 + 6𝑦2 + 6𝑥 − 10𝑦 + 9 = 0.
т va п ning qanday qiymatlarida
𝑚𝑥2 + 12𝑥𝑦 + 9𝑦2 + 4𝑥 + 𝑛𝑦 − 13 = 0
tenglama quyidagilarni aniqlaydi:
а) markaziy chiziqni; б) markazsiz chiziqni;
в) ko‘p markazli chiziqlarni.
Parallel ko‘chirish yo‘li bilan quyidagi tenglamalarning har birining turini aniqlab, sodda holga keltiring. Qanday geometrik shaklni ifodalashini toping. Eski va yangi koordinatalar sistemasida grafigini chizing.
1) 4𝑥2 + 9𝑦2 − 40𝑥 + 36𝑦 + 100 = 0;
2) 9𝑥2 − 16𝑦2 − 54𝑥 − 64𝑦 − 127 = 0;
3) 9𝑥2 + 4𝑦2 + 18𝑥 − 8𝑦 + 49 = 0;
Quyidagi berilgan tenglamalarning har birini eng oddiy shaklga keltirib, ularning turini, qanday geometrik shaklni tasvirlashini, grafiklarning eski va yangi koordinata o‘qlariga nisbatan joylashishini aniqlang:
1) 32𝑥2 + 52𝑥𝑦 − 7𝑦2 + 180 = 0;
2) 5𝑥2 − 6𝑥𝑦 + 5𝑦2 − 32 = 0;
3) 17𝑥2 − 12𝑥𝑦 + 8𝑦2 = 0;
4) 5𝑥2 + 24𝑥𝑦 − 5𝑦2 = 0;
5) 5𝑥2 − 6𝑥𝑦 + 5𝑦2 + 8 = 0.
Quyidagi berilgan tenglamalarning har birini eng oddiy shaklga keltirib, ularning turini, qanday geometrik shaklni tasvirlashini, grafiklarning eski va yangi koordinata o‘qlariga nisbatan joylashishini aniqlang:
1) 14𝑥2 + 24𝑥𝑦 + 21𝑦2 − 4𝑥 + 18𝑦 − 139 = 0;
2) 11𝑥2 − 20𝑥𝑦 − 4𝑦2 − 20𝑥 − 8𝑦 + 1 = 0;
3) 7𝑥2 + 60𝑥𝑦 + 32𝑦2 − 14𝑥 − 60𝑦 + 7 = 0;
4) 50𝑥2 − 8𝑥𝑦 + 35𝑦2 + 100𝑥 − 8𝑦 + 67 = 0;
Quyidagi tenglamalarni koordinatalar sistemasini almashtirmasdan, har biri ellipsni ifodalashini va uning yarim o‘qlardagi qiymatlarini toping:
1) 41𝑥2 + 24𝑥𝑦 + 9𝑦2 + 24𝑥 + 18𝑦 − 36 = 0;
2) 8𝑥2 + 4𝑥𝑦 + 5𝑦2 + 16𝑥 + 4𝑦 − 28 + 9 = 0;
3) 13𝑥2 + 18𝑥𝑦 + 37𝑦2 − 26𝑥 − 18𝑦 + 3 = 0;
4) 13𝑥2 + 10𝑥𝑦 + 13𝑦2 + 46𝑥 + 62𝑦 + 13 = 0.
Koordinatalar sistemasini almashtirmasdan quyidagi tenglamalar bitta nuqtani ifodalashini isbotlang.
1) 5𝑥2 − 6𝑥𝑦 + 2𝑦2 − 2𝑥 + 2 = 0;
2) 𝑥2 + 2𝑥𝑦 + 2𝑦2 + 6𝑦 + 9 = 0;
3) 5𝑥2 + 4𝑥𝑦 + 𝑦2 − 6𝑥 − 2𝑦 + 2 = 0;
4) 𝑥2 − 6𝑥𝑦 + 10𝑦2 + 10𝑥 − 32𝑦 + 26 = 0.
Koordinatalar sistemasini almashtirmasdan, har biri giperbolani ifodalasa, uning yarim o‘qlarining qiymatini toping:
1) 4𝑥2 + 24𝑥𝑦 + 11𝑦2 + 64𝑥 + 42𝑦 + 51 = 0;
2) 12𝑥2 + 26𝑥𝑦 + 12𝑦2 − 52𝑥 − 48𝑦 + 73 = 0;
3) 3𝑥2 + 4𝑥𝑦 − 12𝑥 + 16 = 0;
4) 𝑥2 − 6𝑥𝑦 − 7𝑦2 + 10𝑥 − 30𝑦 + 23 = 0.
Koordinatalar sistemasini almashtirmasdan, quyidagi tenglamalarning har biri kesishgan to‘g‘ri chiziqlar juftligini (degenerat giperbola) belgilashini aniqlang va ularning tenglamalarini toping:
1) 3𝑥2 + 4𝑥𝑦 + 𝑦2 − 2𝑥 − 1 = 0;
2) 3𝑥2 − 6𝑥𝑦 + 8𝑦2 − 4𝑦 − 4 = 0;
3) 𝑥2 − 4𝑥𝑦 + 3𝑦2 = 0;
4) 𝑥2 + 4𝑥𝑦 + 3𝑦2 − 6𝑥 − 12𝑦 + 9 = 0.
Quyidagi tenglamalarning har biri parabolik ekanligini aniqlang; ularning har birini eng oddiy shaklga keltiring; ular qanday geometrik tasvirlarni belgilashlarini aniqlang:
1) 9𝑥2 + 24𝑥𝑦 + 16𝑦2 − 18𝑥 + 226𝑦 + 209 = 0;
2) 𝑥2 − 2𝑥𝑦 + 𝑦2 − 12𝑥 + 12𝑦 − 14 = 0;
3) 4𝑥2 + 12𝑥𝑦 + 9𝑦2 − 4𝑥 − 6𝑦 + 1 = 0.
Koordinatalar sistemasini almashtirmasdan, quyidagi tenglamalarning har biri parabolani aniqlaganligini aniqlang va ushbu parabola parametrini toping:
1) 9𝑥2 + 24𝑥𝑦 + 16𝑦2 − 120𝑥 + 90𝑦 = 0;
2) 9𝑥2 − 24𝑥𝑦 + 16𝑦2 − 54𝑥 − 178𝑦 + 181 = 0;
3) 𝑥2 − 2𝑥𝑦 + 𝑦2 + 6𝑥 − 14𝑦 + 29 = 0;
4) 9𝑥2 − 6𝑥𝑦 + 𝑦2 − 50𝑥 + 50𝑦 − 275 = 0.
Koordinatalar sistemasini almashtirmasdan, quyidagi tenglamalarning har biri bir juft parallel to‘g‘ri chiziqni belgilashini aniqlang va ularning tenglamalarini toping:
1) 4𝑥2 + 4𝑥𝑦 + 𝑦2 − 12𝑥 − 6𝑦 + 5 = 0;
2) 4𝑥2 − 12𝑥𝑦 + 9𝑦2 + 20𝑥 − 30𝑦 − 11 = 0;
3) 25𝑥2 − 10𝑥𝑦 + 𝑦2 + 10𝑥 − 2𝑦 − 15 = 0.
Dostları ilə paylaş: |