Sustainable Catalysis: Without Metals or Other Endangered Elements, Part 2, The Royal
Society of Chemistry: 2016; pp 196-255.
24.
List, B.; Lerner, R. A.; Barbas, C. F., Proline-catalyzed direct asymmetric aldol reactions. J.
Am. Chem. Soc. 2000, 122 (10), 2395-2396.
25.
Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C., New strategies for organic catalysis: The
first highly enantioselective organocatalytic Diels-Alder reaction. J. Am. Chem. Soc. 2000,
122 (17), 4243-4244.
26.
The terms 'enamine catalysis' and 'iminium ion catalysis' will for convenience be used in this
presentation, although such species are perhaps better characterized as intermediates rather
than catalysts.
27.
Bahmanyar, S.; Houk, K. N., The origin of stereoselectivity in proline-catalyzed
intramolecular aldol reactions. J. Am. Chem. Soc. 2001, 123 (51), 12911-12912.
28.
Hajos, Z. G.; Parrish, D. R. Asymmetric Synthesis of Optically Active Polycyclic Organic
Compounds. German Patent DE2102623, July 29, 1971.
29.
Hajos, Z. G.; Parrish, D. R., Asymmetric synthesis of bicyclic intermediates of natural product
chemistry. J. Org. Chem. 1974, 39 (12), 1615-1621.
30.
Eder, U.; Sauer, G.; Weichert, R., Total Synthesis of Optically Active Steroids .6. New Type of
Asymmetric Cyclization to Optically Active Steroid Cd Partial Structures. Angew. Chem. Int.
Ed. 1971, 10 (7), 496-497.
31.
Agami, C.; Platzer, N.; Sevestre, H., Enantioselective cyclizations of acyclic 1,5-diketones.
Bull. Soc. Chim. Fr. 1987, 358-360.
32.
Wagner, J.; Lerner, R. A.; Barbas, C. F., Efficient Aldolase Catalytic Antibodies That Use the
Enamine Mechanism of Natural Enzymes. Science 1995, 270 (5243), 1797.
33.
Hoffmann, T.; Zhong, G.; List, B.; Shabat, D.; Anderson, J.; Gramatikova, S.; Lerner, R. A.;
Barbas, C. F., Aldolase Antibodies of Remarkable Scope. J. Am. Chem. Soc. 1998, 120 (12),
2768-2779.
34.
List, B.; Shabat, D.; Barbas Iii, C. F.; Lerner, R. A., Enantioselective Total Synthesis of Some
Brevicomins Using Aldolase Antibody 38C2. Chem. Eur. J. 1998, 4 (5), 881-885.
35.
See, for example: Lewis Acids in Organic Synthesis; Yamamoto, H., Ed.; Wiley-
VCH:Weinheim, 2000; Vols. 1 and 2.
36.
Baum, J. S.; Viehe, H. G., Synthesis and cycloaddition reactions of acetylenic iminium
compounds. J. Org. Chem. 1976, 41 (2), 183-187.
37.
Jung, M. E.; Vaccaro, W. D.; Buszek, K. R., Asymmetric diels-alder reactions of chiral alkoxy
iminium salts. Tetrahedron Lett. 1989, 30 (15), 1893-1896.
18 (19)
38.
Yamaguchi, M.; Shiraishi, T.; Hirama, M., A Catalytic Enantioselective Michael Addition of a
Simple Malonate to Prochiral α,β-Unsaturated Ketoses and Aldehydes. Angewandte Chemie
International Edition in English 1993, 32 (8), 1176-1178.
39.
Kawara, A.; Taguchi, T., An enantioselective Michael addition of soft nucleophiles to prochiral
enone catalyzed by (2-pyrrolidyl)alkyl ammonium hydroxide. Tetrahedron Lett. 1994, 35
(47), 8805-8808.
40.
(a) Berkessel, A.; Gröger, H. Asymmetric Organocatalysis. From Biomimetic concepts to
Application in Asymmetric Synthesis; Wiley-VCH:Weinheim, 2005. (b) List B. Asymmetric
Organocatalysis. Topics in Current Chemistry Vol 291; Lis, B., Ed; Springer: Mülheim, 2010.
(c) Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications;
Dalko, P. I., Ed.; Wiley-VCH: Weinheim, 2013; Vols. 1-3. (d) Vedejs, E.; Denmark, S. E. Lewis
base Catalysis in Organic Synthesis; Wiley-VCH: Weinheim, 2016; Vols. 1-3. (e)
Organocatalysis. Stereoselective Reactions and Applications in Organic Synthesis; Benaglia,
M., Ed.; De Gruyter: Harvard, 2021.
41.
List, B., The Direct Catalytic Asymmetric Three-Component Mannich Reaction. J. Am. Chem.
Soc. 2000, 122 (38), 9336-9337.
42.
Yang, J. W.; Chandler, C.; Stadler, M.; Kampen, D.; List, B., Proline-catalysed Mannich
reactions of acetaldehyde. Nature 2008, 452 (7186), 453-455.
43.
Chandler, C.; Galzerano, P.; Michrowska, A.; List, B., The Proline-Catalyzed Double Mannich
Reaction of Acetaldehyde with N-Boc Imines. Angew. Chem. Int. Ed. 2009, 48 (11), 1978-
1980.
44.
List, B., Direct Catalytic Asymmetric α-Amination of Aldehydes. J. Am. Chem. Soc. 2002,
124 (20), 5656-5657.
45.
Yang, J. W.; Hechavarria Fonseca, M. T.; Vignola, N.; List, B., Metal-Free, Organocatalytic
Asymmetric Transfer Hydrogenation of α,β-Unsaturated Aldehydes. Angew. Chem. Int. Ed.
2005, 44 (1), 108-110.
46.
List, B., Enamine Catalysis Is a Powerful Strategy for the Catalytic Generation and Use of
Carbanion Equivalents. Acc. Chem. Res. 2004, 37 (8), 548-557.
47.
Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C., New Strategies for Organic Catalysis: The
First Enantioselective Organocatalytic 1,3-Dipolar Cycloaddition. J. Am. Chem. Soc. 2000,
122 (40), 9874-9875.
48.
Paras, N. A.; MacMillan, D. W. C., New Strategies in Organic Catalysis: The First
Enantioselective Organocatalytic Friedel−Crafts Alkylation. J. Am. Chem. Soc. 2001, 123
(18), 4370-4371.
49.
Paras, N. A.; MacMillan, D. W. C., The Enantioselective Organocatalytic 1,4-Addition of
Electron-Rich Benzenes to α,β-Unsaturated Aldehydes. J. Am. Chem. Soc. 2002, 124 (27),
7894-7895.
50.
Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C., The First Enantioselective Organocatalytic
Mukaiyama−Michael Reaction:
A Direct Method for the Synthesis of Enantioenriched γ-
Butenolide Architecture. J. Am. Chem. Soc. 2003, 125 (5), 1192-1194.
51.
Lelais, G.; MacMillan, D. W. C., Modern Strategies in Organic Catalysis: The Advent and
Development of Iminium Activation. Aldrichim. Acta 2006, 39, 79-87.
52.
Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A., Enantioselective
Organocatalyzed α Sulfenylation of Aldehydes. Angew. Chem. Int. Ed. 2005, 44 (5), 794-797.
53.
Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M., Diphenylprolinol Silyl Ethers as Efficient
Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes.
Angew. Chem. Int. Ed. 2005, 44 (27), 4212-4215.
19 (19)
54.
Marigo, M.; Franzén, J.; Poulsen, T. B.; Zhuang, W.; Jørgensen, K. A., Asymmetric
Organocatalytic Epoxidation of α,β-Unsaturated Aldehydes with Hydrogen Peroxide. J. Am.
Chem. Soc. 2005, 127 (19), 6964-6965.
55.
Reyes-Rodriguez, G. J.; Rezayee, N. M.; Vidal-Albalat, A.; Jorgensen, K. A., Prevalence of
Diarylprolinol Silyl Ethers as Catalysts in Total Synthesis and Patents. Chem. Rev. 2019, 119
(6), 4221-4260.
56.
Beeson, T. D.; Mastracchio, A.; Hong, J.-B.; Ashton, K.; MacMillan, D. W. C., Enantioselective
Organocatalysis Using SOMO Activation. Science 2007, 316 (5824), 582-585.
57.
Conrad, J. C.; Kong, J.; Laforteza, B. N.; MacMillan, D. W. C., Enantioselective α-Arylation of
Aldehydes via Organo-SOMO Catalysis. An Ortho-Selective Arylation Reaction Based on an
Open-Shell Pathway. J. Am. Chem. Soc. 2009, 131 (33), 11640-11641.
58.
Nicewicz, D. A.; MacMillan, D. W. C., Merging photoredox catalysis with organocatalysis: The
direct asymmetric alkylation of aldehydes. Science 2008, 322 (5898), 77-80.
59.
Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P., Efficient visible light photocatalysis of
[2+2] enone cycloadditions. J. Am. Chem. Soc. 2008, 130 (39), 12886-12887.
60.
Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J., Electron-Transfer Photoredox
Catalysis: Development of a Tin-Free Reductive Dehalogenation Reaction. J. Am. Chem. Soc.
Dostları ilə paylaş: |