References
1.
Trofast, J. The Concept of Catalysis. In Perspectives in Catalysis- In Commemoration of Jöns
Jacob Berzelius; Larsson, R., Ed.; Gleerup:Lund, 1981; p 9-17
2.
Hagen, J., Industrial Catalysis: A Practical Approach. 2015; p 459-462.
3.
Noyori, R., Insight: Green chemistry: the key to our future. Tetrahedron 2010, 66 (5), 1028.
4.
Rothberg, G. Catalysis: Concepts and Green Chemistry; Wiley-VCH: Weinheim, 2008; pp 1-
38.
5.
von Liebig, J., Ueber die Bildung des Oxamids aus Cyan. Justus Liebigs Ann. Chem. (Ann.
Chem. Pharm.) 1860, 113 (2), 246-247.
6.
Tavakol, H.; Ranjbari, M. A.; Mahmoudi, A., DFT study on the mechanistic details of the
hydrolysis of dicyan using acetaldehyde as the first organocatalyst. Computational and
Theoretical Chemistry 2019, 1154, 37-43.
7.
Seayad, J.; List, B., Asymmetric organocatalysis. Org Biomol Chem 2005, 3 (5), 719-724.
8.
Berkessel, A.; Gröger, H., Asymmetric Organocatalysis: From Biomimetic Concepts to
Applications in Asymmetric Synthesis. Wiley-VCH: Weinheim, 2005; pp 9-12.
9.
For more information, see:
https://www.nobelprize.org/prizes/list/all-nobel-prizes-in-
chemistry/
10.
Bredig, G.; Fiske, W. S., Biochem. Z. 1912, 46, 7-23.
11.
E.g. the (DHQ)2-PHAL and (DHQD)2-PHAL ligands used in the asymmetric dihydroxylation
reaction developed by K.B. Sharpless and for which he received the Nobel Prize in Chemistry
in 2001.
12.
Pracejus, H.; Mätje, H., Organische Katalysatoren. LXXI Asymmetrische Synthesen mit
Ketenen. IV. Zusammenhänge zwischen dem räumlichen Bau einiger alkaloidartiger
Katalysatoren und ihren stereospezifischen Wirkungen bei asymmetrischen Estersynthesen.
J. Prakt. Chem. 1964, 24, 195-205.
13.
Pracejus, H., Organische Katalysatoren, LXI. Asymmetrische Synthesen mit Ketenen, I.
Alkaloid-katalysierte asymmetrische Synthesen von α-Phenyl-propionsäureestern. Justus
Liebigs Ann. Chem. 1960, 634, 9-22.
14.
Wynberg, H.; Helder, R., Asymmetric induction in the alkaloid-catalysed Michael reaction.
Tetrahedron Lett. 1975, 16, 4057-4060.
15.
Langenbeck, W., Ueber Ähnlichkeiten in der katalytischen Wirkung von Fermenten und von
definierten organischen Stoffen. Angew. Chem. 1928, 41, 740-745.
16.
Fischer, F. G.; Marschall, A., Ber. 1931, 64, 2825-2827.
17.
Langenbeck, W.; Borth, G., Ber. 1942, 75B, 951-953.
17 (19)
18.
Rutter, W. J., Fed. Proc. Am. Soc. Exp. Biol. 1964, 23, 1248-1257.
19.
Lai, C. Y.; Nakai, N.; Chang, D., Amino Acid Sequence of Rabbit Muscle Aldolase and the
Structure of the Active Center. Science 1974, 183 (4130), 1204.
20.
Zuend, S. J.; Coughlin, M. P.; Lalonde, M. P.; Jacobsen, E. N., Scaleable catalytic asymmetric
Strecker syntheses of unnatural α-amino acids. Nature 2009, 461 (7266), 968-970.
21.
Sigman, M. S.; Jacobsen, E. N., Schiff Base Catalysts for the Asymmetric Strecker Reaction
Identified and Optimized from Parallel Synthetic Libraries. J. Am. Chem. Soc. 1998, 120 (19),
4901-4902.
22.
Parvin, T.; Yadav, R.; Choudhury, L. H., Recent applications of thiourea-based
organocatalysts in asymmetric multicomponent reactions (AMCRs). Org Biomol Chem
2020, 18 (29), 5513-5532.
23.
Limnios, D.; Kokotos, C. G., Ureas and Thioureas as Asymmetric Organocatalysts. In
Dostları ilə paylaş: |