“Umumiy matematika” kafedrasi Mavzu: O'zbekistonda matematika fanini o'qitish metodikasi tarixi va rivojlanishi



Yüklə 379,73 Kb.
Pdf görüntüsü
səhifə9/13
tarix29.01.2023
ölçüsü379,73 Kb.
#81531
1   ...   5   6   7   8   9   10   11   12   13
Umumiy o'rta ta'lim.
Umumiy o'rta ta'lim quyidagi bosqichlarga bo'linadi: 
Boshlang'ich ta'lim (I-IV sinf) 
Umumiy o‘rta ta‘lim (I-IX sinflar) 
Boshlang'ich ta'limda umumiy o'rta ta'lim olish uchun zarur bo'lgan 
savodxonlik, bilim va ko'nikmalar asoslari shakllantiriladi. Birinchi sinfga bolalar 
6—7 yoshdan qabul qilinadi. 
Umumiy o'rta ta'limda bilimlarni zarur hajmi beriladi. Bolalarda mustaqil 
fikrlash, tashkilotchilik qobiliyati va amaliy tajriba ko'nikmalari rivojlantiriladi. 
Kasbga yo'naltiradi, ta'limning navbatdagi bosqichiga yordam beradi. 
Ixtisoslashtirilgan maktalar ham tashkil etilishi va bolalar qobiliyati, iste'dodga 
ko'ra bunday maktablarda ta'lim olishi mumkin. 
O'rta maxsus va kasb-hunar ta'limi. 
Har bir yigit-qiz umumiy o'rta ta'limga ega bo'lgandan so'ng akademik litsey 
yoki kasb-hunar kollejida o'qishni ixtiyoriy ravishda tanlashi mumkin. Bu ta'lim 
muassasalarida o'qish muddati uch yildan kam bo'lmaydi. 
Litsey va kollejlar egallangan kasb-hunar bo'yicha ishlash huquqini beradi 
va hamda ish yoki ta'limni navbatdagi bosqichda davom ettirishi uchun asos 
bo'ladigan maxsus, kasb-hunar ta'lim beradi[12]. 
2-§. MATEMATIKA O'QITISH METODIKALARI VA ULARNI O’QUV 
JARAYONIGA TATBIQ ETILISHI 
 
2.1. Hozirgi kunda matematika o'qitishning umumiy metodikasi 
Matematika so'zi qadimgi grekcha - mathema so'zidan olingan bo'lib, uning 
ma'nosi «fanlarni bilish» demakdir. Matematika fanining o'rganadigan narsasi 
(ob'ekti) materiyadagi mavjud narsalarning fazoviy formalari va ular orasidagi 
miqdoriy munosabatlardan iborat. Hozirgi davrda matematika fani shartli ravishda 
ikkiga ajraladi. 
1) elementar matematika, 2) oliy matematika.


20 
Elementar matematika ham mustaqil mazmunga ega bo'lgan fan bo'lib, u 
oliy matematikaning turli tarmoqlaridan, ya'ni nazariy arifmetikadan, sonlar 
nazariyasidan, oliy algebradan, matematik analizdan va geometriyaning mantiqiy 
kursidan olingan elementar ma'lumotlar asosiga qurilgandir. 
Oliy matematika fani esa real olamning fazoviy formalari va ular orasidagi 
miqdoriy munosabatlarni to'la hamda chuqur aks ettiruvchi matematik 
qonuniyatlarni topish bilan shu qo'llanadi. 
Elementar matematika fani maktab matematika kursining asosini tashkil 
qiladi. Maktab matematika kursininng maqsadi o'quvchilarga ularning psixologik 
xususiyatlarini hisobga olgan holda matematik bilimlar sistemasi ma'lum usulda 
(metodika) orqali o'quvchilarga etkaziladi. (Metodika so'zi grekcha so'z bo'lib, 
«yo'l» degan ma'noni beradi). Matematika metodikasi pedagogika va didaktika 
fanining asosiy bo'limlaridan biri bo'lib, jamiyatimiz taraqqiyoti darajasida ta'lim 
maqsadlariga mos keluvchi matematikani o'qitish, o'rganish qonuniyatlarini 
o'rganadigan mustaqil fandir. Matematika metodikasi ta'lim jarayoni bilan bog'liq 
bo'lgan quyidagi uch savolga javob beradi:
1. Nima uchun matematikani o'rganish kerak? 
2. Matematikadan nimalarni o'rganish kerak? 
3. Matematikani qanday o'rganish kerak? 
Matematika metodikasi haqidagi tushuncha birinchi bo'lib shveytsariyalik 
pedagog - matematik G.Pestalotsining 1803 yilda yozgan «Sonni ko'rgazmali 
o'rganish» asarida bayon qilingan. XVII asrning birinchi yarmidan boshlab 
matematika o'qitish metodikasiga doir masalalar bilan rus olimlaridan akademik 
S.E.Gurev (I760-I8I3), XVIII asrning birinchi va ikkinchi yarmidan esa 
N.I.Lobachevskiy (I792-I856), I.N.Ulyanov (I83I-I886). L.N.Tolstoy (I828-I9IO) 
va atoqli metodist-matematik S.I.Shoxor-Trotskiy (I853-I923), A.N.Ostrogradskiy 
va boshqalar shug'ullandilar va ular matematika faniga ilmiy nuqtai-nazardan 
qarab, uning progressiv asoslarini ishlab chiqdilar. Masalan, A.N.Ostrogradskiy 
«Ong kuzatishdan keyin paydo bo'ladi, ong real, mavjud olamga asoslangan» deb 


21 
yozgan edi. Geometriya metodikasidan materiallar (Materiali po metodike 
geometrii, 1884 yil, 8-bet.). 
Keyinchalik matematika o'qitish metodikasining turli yo'nalishlari bilan 
N.A.Izvolskiy, 
V.M.Bradis, 
S.E.Lyapin, 
I.K.Andronov, 
N.A.Glagoleva, 
I.Ya.Dempman, A.N.Barsukov, S.I.Novoselov, A.Ya.Xinchin, N.F.Chetveruxin, 
A.N.Kolmogorov, A.I.Markushevich, A.I.Fetisov va boshqalar shug'ullandilar.
1970 yildan boshlab maktab matematika kursining mazmuni yangi dastur 
asosida o'zgartirildi, natijada uni o'qitish metodikasi ham ishlab chiqildi. Hozirgi 
dastur asosida o'qitilayotgan maktab matematika fanining metodikasi bilan 
professorlardan 
V.M.Kolyagin, 
J.Ikromov, 
R.S.Cherkasov, 
P.M.Erdniev, 
N./aybullaev, T.To'laganov, A.Abduqodirov va boshqa metodist olimlar 
shug'ullanmoqdalar. Matematika o'qitish metodikasi pedagogika institutlarining 
III-IV kurslarida o'tiladi. U o'zining tuzilishi xususiyatiga ko'ra shartli ravishda 
uchga bo'linadi:
1. Matematika o'qitishning umumiy metodikasi. Bu bo'limda matematika 
fanining maqsadi, mazmuni, formasi, metodlari va uning vositalarining metodik 
sistemasi, pedagogika, psixologiya qonunlari hamda didaktik printsiplar asosida 
ochib beriladi. 
2. Matematika o'qitishning maxsus metodikasi. Bu bo'limda matematika 
o'qitish umumiy metodikasining qonun va qoidalarining aniq mavzu materiallariga 
tadbiq qilish yo'llari ko'rsatiladi. 
3. Matematika o'qitishning aniq metodikasi. Bu bo'lim ikki qismdan iborat: 
1). Umumiy metodikaning xususiy masalalari; 
2). Maxsus metodikaning xususiy masalalari. 
Masalan, VI sinfda matematika darslarini rejalashtirish va uni o'tkazish 
metodikasi deyilsa, bu umumiy metodikaning xususiy masalasi bo'lib hisoblanadi. 
O'rta maktablarda matematika o'qitishning maqsadi quyidagi uch omil bilan 
belgilanadi:
1. Matematika o'qitishning umumta'limiy maqsadi. 
2. Matematika o'qitishning tarbiyaviy maqsadi. 


22 
3. Matematika o'qitishning amaliy maqsadi.
Matematika o'qitishning umumta'limiy maqsadi o'z oldiga quyidagi 
vazifalarni qo'yadi: 
a) O'quvchilarga ma'lum bir dastur asosida matematik bilimlar tizimini 
berish. Bu bilimlar tizimi matematika fani to'g'risida o'quvchilarga etarli darajada 
ma'lumot berishi, ularni matematika fanining yuqori bo'limlarini o'rganishga 
tayyorlashi kerak. Bundan tashqari, dastur asosida o'quvchilar o'qish jarayonida 
olgan bilimlarining ishonchli ekanligini tekshira bilishga o'rganishlari, ya'ni 
isbotlash va nazorat qilishning asosiy metodlarini egallashlari kerak. 
b) O'quvchilarning og'zaki va yozma matematik bilimlarini tarkib toptirish. 
Matematikani o'rganish o'quvchilarning o'z ona tillarida xatosiz so'zlash, o'z 
fikrini aniq, ravshan va lo'nda qilib bayon eta bilish malakalarini o'zlashtirishlariga 
yordam berishi kerak. Bu degan so'z o'quvchilarning har bir matematik qoidani o'z 
ona tillarida to'g'ri gapira olishlariga erishish hamda ularni ana shu qoidaning 
matematik ifodasini formulalar yordamida to'g'ri yoza olish qobiliyatlarini 
atroflicha shakllantirish demakdir; 
v) O'quvchilarni matematik qonuniyatlar asosida real haqiqatlarni bilishga 
o'rgatish. Bu erda o'quvchilarga real olamda yuz beradigan eng sodda hodisalardan 
tortib to murakkab hodisalargacha hammasining fazoviy formalari va ular 
orasidagi miqdoriy munosabatlarni tushunishga imkon beradigan hajmda bilimlar 
berish ko'zda tutiladi. 
Bunday bilimlar berish orqali esa o'quvchilarning fazoviy tasavvur qilishlari 
shakllanadi hamda mantiqiy tafakkur qilishlari yanada rivojlanadi. 
Matematika o'qitishning tarbiyaviy maqsadi o'z oldiga quyidagilarni qo'yadi: 
a) O'quvchilarda ilmiy dunyoqarashni shakllantirish. Bu g'oya bilish 
nazariyasi asosida amalga oshiriladi. 
b) O'quvchilarda matematikani o'rganishga bo'lgan qiziqishlarni tarbiyalash. 
Bizga ma'lumki, matematika darslarida o'quvchilar o'qishning dastlabki 
kunlaridanoq mustaqil ravishda xulosa chiqarishga o'rganadilar. Ular avvalo 
kuzatishlar natijasida, so'ngra esa mantiqiy tafakkur qilish natijasida xulosa 


23 
chiqaradilar. Ana shu chiqarilgan xulosalar matematik qonuniyatlar bilan 
tasdiqlanadi. 
Matematika o'qituvchisining vazifasi o'quvchilarda mustaqil mantiqiy 
fikrlash 
qobiliyatlarini 
shakllantirish 
bilan 
birga 
ularda 
matematikaning 
qonuniyatlarini o'rganishga bo'lgan qiziqishlarini tarbiyalashdan iboratdir.
v) 
O'quvchilarda 
matematik 
tafakkurni 
va matematik madaniyatni 
shakllantirish. Matematika darslarida o'rganiladigan har bir matematik xulosa 
qat'iylikni talab qiladi, bu esa o'z navbatida juda ko'p matematik tushuncha va 
qonuniyatlar bilan ifodalanadi. O'quvchilar ana shu qonuniyatlarni bosqichma-
bosqich o'rganishlari davomida ularning mantiqiy tafakkur qilishlari rivojlanadi, 
matematik xulosa chiqarish madaniyatlari shakllanadi. O'quvchilarni biror 
matematik qonuniyatni ifoda qilmoqchi bo'lgan fikrlarni simvolik tilda to'g'ri 
ifodalay olishlari va aksincha simvolik tilda ifoda qilingan matematik qonuniyatni 
o'z ona tillarida ifoda qila olishlariga o'rgatish orqali ularda matematik madaniyat 
shakllantiriladi. 
3. Matematika o'qitishning amaliy maqsadi o'z oldiga quyidagi vazifalarni 
qo'yadi: 
a) Matematika kursida olingan nazariy bilimlarni kundalik hayotda 
uchraydigan elementar masalalarni echishga tadbiq qila olishga o'rgatish. Bunda 
asosan o'quvchilarda nazariy bilimlarni amaliyotga bog'lay olish imkoniyatlarini 
tarkib toptirish, ularda turli sonlar va matematik ifodalar ustida amallar bajarish 
malakalarini shakllantirish va ularni mustahkamlash uchun maxsus tuzilgan amaliy 
masalalarni hal qilishga o'rgatiladi. 
b) Matematikani o'qitishda texnik vosita va ko'rgazmali qurollardan 
foydalanish 
malakalarini 
shakllantirish. 
Bunda 
o'quvchilarning matematika 
darslarida texnika vositalaridan, matematik ko'rgazmali qurollar, jadvallar va 
hisoblash vositalaridan foydalana olish malakalari tarkib toptiriladi. 
v) O'quvchilarni mustaqil ravishda matematik bilimlarni egallashga 
o'rgatish. Bunda asosan o'quvchilarni o'quv darsliklaridan va ilmiy-ommaviy 


24 
matematik kitoblardan mustaqil o'qib o'rganish malakalarini shakllantirishdan 
iboratdir. 

Yüklə 379,73 Kb.

Dostları ilə paylaş:
1   ...   5   6   7   8   9   10   11   12   13




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin