Berilgan y=f(x) funksiyaning aniq integrali tushunchasini ikkita shart bajarilgan holda qaragan edik. Birinchidan, [a,b] integrallash sohasining a va b chegaralari chekli sonlardan iborat deb olingan edi. Ikkinchidan, integral ostidagi f(x) funksiya [a,b] integrallash sohasida chegaralangan deb hisoblangan edi.
Ammo bir qator masalalarni yechishda quyi yoki yuqori chegaralaridan kamida bittasi cheksiz (±∞) yoki integral ostidagi f(x) funksiya integrallash sohasida chegaralanmagan integrallar paydo bo‘ladi. Masalan, y=e–x, x=0 va y=0 chiziqlar bilan chegaralangan egri chiziqli trapetsiyani yuzasini topish masalasi [0,∞) cheksiz soha bo‘yicha integral tushunchasini kiritishni va uni hisoblashni taqozo qiladi. Yoki , parabola yoyining uzunligini topish masalasi [0,1] kesmada chegaralanmagan funksiyani integrallash masalasiga keladi.
Shu sababli aniq integral tushunchasini bunday hollar uchun umumlashtirishga to‘g‘ri keladi va bu yerda biz shu masala bilan shug‘ullanamiz.
Berilgan y=f(x) funksiya [a, +∞) cheksiz yarim oraliqda aniqlangan va ixtiyoriy chekli b≥a uchun [a,b] kesmada integrallanuvchi, ya’ni
Berilgan y=f(x) funksiya [a, +∞) cheksiz yarim oraliqda aniqlangan va ixtiyoriy chekli b≥a uchun [a,b] kesmada integrallanuvchi, ya’ni
integral mavjud bo‘lsin.
1-TA’RIF:y=f(x) funksiyaning [a, +∞) cheksiz yarim oraliq bo‘yicha I turxosmas integrali deb yuqori chegarasi o‘zgaruvchi F(b) integralning b→+∞ bo‘lgandagi limitiga aytiladi.