Xosmas integrallar. Chegaralari cheksiz xosmas integrallar. Chegaralanmagan funksiyalarning xosmas integrallari. Xosmas integrallarning yaqinlashish alomatlari



Yüklə 18,69 Kb.
səhifə8/8
tarix22.12.2023
ölçüsü18,69 Kb.
#190622
1   2   3   4   5   6   7   8
Xosmas integrallar

    Bu səhifədəki naviqasiya:
  • XULOSA

I va II TUR XOSMAS INTEGRALLAR

 

 

Demak, aralash turdagi I integral yaqinlashuvchi va uning qiymati I=I1+ I2=3 .

Xuddi shunday tarzda aralash turdagi

xosmas integrallar uzoqlashuvchi ekanligini ko‘rsatish mumkin va bu o‘quvchiga mustaqil ish sifatida havola etiladi.

 

XULOSA

Aniq integral ta’rifida integrallash sohasi chekli kesma va integral ostidagi funksiya chegaralangan deb qaralgan edi. Ammo bir qator masalalarni yechishda bu shartlardan kamida bittasi bajarilmaydigan vaziyatlar paydo bo‘ladi. Misol sifatida cheksiz geometrik shakllarning yuzasini hisoblash masalasini ko‘rsatish mumkin. Bunday hollarda xosmas integrallar tushunchasidan foydalaniladi. Ular ma’lum bir aniq integral qiymatlarining u yoki bu holdagi limiti kabi aniqlanadi. Bu limit mavjud va chekli bo‘lsa, xosmas integral yaqinlashuvchi, aks holda esa uzoqlashuvchi deyiladi.

Integrallash sohasining kamida bitta chegarasi cheksiz bo‘lgan holda I tur xosmas integral tushunchasiga kelamiz. Agar integral ostidagi funksiya chegaralanmagan bo‘lsa, unda II tur xosmas integralga ega bo‘lamiz. Chegaralaridan kamida bittasi cheksiz va integral ostidagi funksiya chegaralanmagan bo‘lgan xosmas integrallar aralash turli deb ataladi.


Yüklə 18,69 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin