y=f(x) funksiya [a,b) yarim oraliqda chegaralanmagan, ammo ixtiyoriy uchun bu funksiya [a,b–ε] kesmada chegaralangan va integrallanuvchi bo‘lsin. Bu holda f(x) funksiyaning II tur xosmas integrali quyidagicha kiritiladi:
Bu yerda ham tenglikning o‘ng tomonidagi limit mavjud va chekli bo‘lsa xosmas integral yaqinlashuvchi, aks holda – uzoqlashuvchi deyiladi.
Agar y=f(x) funksiya [a,b] kesmaning biror ichki x=c nuqtasida chegaralanmagan bo‘lsa, bu holda II tur xosmas integral
(10)
tenglik orqali kiritiladi. Bu xosmas integralning yaqinlashuvchi yoki uzoqlashuvchi bo‘lishi 4-ta’rif singari aniqlanadi.
II tur xosmas integrallarning yaqinlashuvchi yoki uzoqlashuvchi ekanligini yetarli shartlari oldin I tur xosmas integrallar uchun ifodalangan 1-3 teoremalarga o‘xshash ifodalanadi.
5.3.Aralash turdagi xosmas integrallar. Agar y=f(x) funksiya x=a nuqtada chegaralanmagan bo‘lsa, unda [a,+∞) yoki (–∞, a] cheksiz yarim oraliqlar bo‘yicha aralash turdagi xosmas integrallar
5.3.Aralash turdagi xosmas integrallar. Agar y=f(x) funksiya x=a nuqtada chegaralanmagan bo‘lsa, unda [a,+∞) yoki (–∞, a] cheksiz yarim oraliqlar bo‘yicha aralash turdagi xosmas integrallar
kabi aniqlanadi. Bunda tengliklarning o‘ng tomonidagi I va II turdagi xosmas integrallarning ikkalasi ham yaqinlashuvchi bo‘lsa aralash turdagi xosmas integral ham yaqinlashuvchi, aks holda esa uzoqlashuvchi deb hisoblanadi.