Yuqori tartibli chiziqli bir jinsli differensial tenglamalar’’


Yuqori tartibli tartibi pasayadigan



Yüklə 124,24 Kb.
səhifə4/8
tarix20.11.2022
ölçüsü124,24 Kb.
#69939
1   2   3   4   5   6   7   8
kurs ishi Vohido

Yuqori tartibli tartibi pasayadigan


differensial tenglamalar



  1. y(n)=f(x) ko’rinishidagi tenglama.

y(n)=(y(n-1)) ni e’tiborga olib



ni hosil qilamiz, bunda x0 x ning tayinlangan qiymati, с1 - o’zgarmas miqdor.
Integrallashni shunday davom ettirib

ifodani hosil qilamiz.
Boshlang’ich shartlarni

qanoatlantiruvchi xususiy yechimni topish uchun

Сn=y0, Cn-1=y1, .. ., C1=yn-1


deb olish etarli.

2. y=f(x,y) ko’rinishidagi tenglama.




=p deb, y=pni xosil qilamiz.
Demak,
p= f(x,y)

Bu tenglamani integrallab




- umumiy yechimni topamiz.
munosabatdan esa - umumiy yechimni xosil qilamiz.

3. ko’rinishidagi tenglama ham


deb parametr kiritish bilan
( - )
yuqorida o’rganilgan tenglamaga keltiriladi.
munosabatdan y ni topib, yechim xosil qilinadi.

4. ko’rinishidagi tenglama.


Bu tenglamani yechish uchun deb olamiz.
Ammo p ni y ning funksiyasi deb qaraymiz: p=p(y)
U xolda,



va larni berilgan tenglamaga qo’yib

birinchi tartibli differensial tenglamani xosil qilamiz. Bu tenglamani integrallab p=p(y,c1) yechimni va
munosabatdan

tenglamani olamiz.
Bu tenglamani integrallab, dastlabki tenglamaning
F(x,y,c1,c2)=0

umumiy yechimini xosil qilamiz.


O’zgarmas koeffitsientli bir jinsli

Yüklə 124,24 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin