Variasiya qatorining egri chizig‘i.
Yuqorida keltirilgan jadvaldan ko‘rinib turibdiki variatsiya qatorlar barcha guruhlarda bir xilda takrorlanmayapti. Bu hol ayniqsa variatsiya qatorining egri chizig‘i yasalganda ko‘zga yaqqol tashlanadi. Vlariatsiya qatori egri chizig‘ini yasash uchun koordinatalar sistemasidan foydalanish kerak. Bunda absissa o‘qiga variatsiya qatoridagi guruhlar-ning qiymati, ordinatasiga esa shu guruhlarning takrorlanish soni yoziladi. So‘ngra absissa va ordinata o‘qlaridagi proporsional nuqtalar chiziq bilan tutashtiriladi. Hosil bo'lgan egri chiziq poligon deb ataladi.
Grafikning qubba shaklidan ko‘rinib turibdiki, uning yuqori cho‘qqisiga eng ko‘p takrorlanuvchi variantlar, ikki yon tomondagi pastki qismlariga kam takrorlanuvchi variantlar to‘g‘ri keladi. O'rganilayotgan belgining o‘rtacha arifmetik qiymati
∑ x2 f
X=-------- formulasiga muvofiq aniqlanadi.
n
Bunda X2 variantlar, f-ulardan har birining takrorlanish darajasi, n- tekshirilayotgan obyektlarning umumiy soni, X- belgining o‘rtacha arifmetik qiymatini bildiradi.
Guruhlarning
chegarasi
|
Guruhlarning
o'rtasi (x)
|
Takrorlanish
soni (r)
|
Xi (r)
|
5,18 - 5,22
|
5,20
|
1
|
2
|
5,23 - 527
|
5,25
|
4
|
21,00
|
5,28 - 5,32
|
5,30
|
7
|
37,10
|
5,33 - 5,37
|
5,35
|
11
|
58,85
|
5,38 - 5,42
|
5,40
|
16
|
86,40
|
5,43 - 5.47
|
5,45
|
30
|
163,50
|
5,48 - 5,52
|
5,50
|
14
|
77,00
|
5,53 - 5,57
|
5,55
|
8
|
44,40
|
5,58 - 5,62
|
5,60
|
6
|
33,60
|
5,63 - 5,67
|
5,65
|
2
|
11,30
|
5,68 - 5,72
|
5,70
|
1
|
5,70
|
|
|
|
544,05
|
Agar guruhlar o‘rtacha kvadratini ularning takrorlanish darajasiga ko‘paytirib olingan raqamni o‘rtacha arifmetik qiymatga taqsimlasak, u holda,
∑ xi f 544,05
X=-------- = ---------- = 5,44 teng ekanligi ma’lum bo’ladi.
n 100
Binobarin o‘rganilayotgan obyektning umumiy tasnifidan tashqari belgining o‘zgarishini ham baholash zarur. Belgining o‘zgarishi ko‘lami buni aks ettiradi. Lekin u unchalik ishonarli bo‘lmaydi. Masalan, g‘o‘zaning Tizma-5 navidan olingan 100 ko‘sak ichida maksimal vazndagisi 5,68 g, minimal vazndagisi 5,18 ga teng. Xuddi shu Tizma-5 dan yana 100 ko‘sak olib o’lchansa, yuqorida qayd etilgan chetki variantlardan tashqari maksimalroq va minimalroq variantlar uchrashi mumkin. Shu sababli ikkinchi holda o'zgaruvchanlik ko‘lami ko'paygandek bo'Iib tuyuladi. O'zgaruvchanlik ko‘lamini yanada to‘g‘ri ifodalash uchun variatsiya qatorining ikkinchi parametri - taqsimot standartidan foydalaniladi. Mazkur parametr ơ (sigma) bilan ifodalanadi.
∑ (Xi-X) f
Ơ= √ ------------------------- formulasi orqali aniqlanadi.
n-1
ơ ni aniqlash uchun har bir obyekt qiymatidan o‘rtacha arifmetik qiymat ayirib tashlanadi va olingan farq kvadratga ko‘tariladi. Kvadratlar yig‘indisi (n-1) ga bo‘linib ildizdan chiqariladi.
Shunday qilib у modifikatsion o'zgaruvchanlik vazifasini o'taydi. Obyektlar ichida bir xil qiymatli variantlar uchraganligi sababli taqsimotning standartini topish formulasiga o'zgartirish kiritish mumkin.
∑ (Xi-X) f
Ơ= √ ------------------------- formulaga asoslanib jadvalning 5-7 bo'limlari to’ldiriladi
n-1
Guruhlarning
chegarasi
|
Guruhlarning o'rtasi (X)
|
Takrorlanish soni (f )
|
Xf
|
X-X
|
(X-X)2
|
(x-x)2 f
|
5,18 - 5,22
|
5,20
|
1
|
5,20
|
-0,240
|
0,058
|
0,058
|
5,23 - 527
|
5,25
|
4
|
21,00
|
-0,191
|
0,036
|
0,145
|
5,28 - 5,32
|
5,30
|
7
|
37,10
|
-0,141
|
0,020
|
0,138
|
5,33 - 5,37
|
5,35
|
11
|
58,85
|
-0,091
|
0,088
|
0,090
|
5,38 - 5,42
|
5,40
|
16
|
86,40
|
-0,041
|
0,002
|
0,026
|
5,43 - 5,47
|
5,45
|
30
|
163,50
|
-0,009
|
0,001
|
0,003
|
5,48 - 5,52
|
5,50
|
14
|
77,00
|
0,059
|
0,004
|
0,049
|
5,53 - 5,57
|
5,55
|
8
|
44,40
|
0,110
|
0,012
|
0,096
|
5,58 - 5,62
|
5,60
|
6
|
33,60
|
0,159
|
0,025
|
0,153
|
5,63 - 5,67
|
5,65
|
2
|
11,30
|
0,210
|
0,044
|
0,088
|
5,68 - 5,72
|
5,70
|
1
|
5,70
|
0,259
|
0,0767
|
0,067
|
|
|
n=∑ f =l00
|
544,05
|
|
|
0.913
|
Jadvalning 7 - bolimida kvadrat ildiz ostidagi kasr suratining qiymati aniqlangan.
0,913
Shunga binoan ơ ---------= 0.096 ga teng.
100-1
Biroq yning o‘zi o'rganilayotgan obyektlarning o‘zgaruvchanligini to‘liq tavsiflab bera olmaydi. Turli arifmetik qiymatli belgilarning o‘zgaruvchanligini taqqoslash uchun nisbiy miqdor V-variatsiya koeffitsienti degan miqdor ishlatiladi va u tubandagi formula bilan topiladi:
Ơ
V=-------x 100
X
Bunda V - variatsiya koeffitsienti foizlar bilan ifodalanib, o‘rtacha arifmetik qiymat X ning qanday qismini tashkil etishini ifodalaydi.
Ơ 0,096
V=-------x 100 = -------- x 100 = 1,77% ga teng
X 5,44
0‘rtacha arifmetik qiymat bir obyektdan olingan turli tanlamalarda har xil bo‘lishi mumkin, ya’ni obyektni mutlaq holda tavsiflab bera olmaydi. Shu sababli arifmetik qiymat bilan birga o‘rtacha arifmetik qiymatning xatosi degan miqdor ishlatiladi va u
Ơ
m------- formula bilan topiladi.
√n
0‘rtacha arifmetik qiymatning xatosi (m) o‘zgaruvchanlikka to‘g‘ri proportsional, kuzatishlar soni (n) ga teskari proportsionaldir. 0‘rtacha arifmetik qiymatning xatosi:
Ơ 0,096
m------- = -------- = 0,096 g.
√n √ 100
Demak, g‘o‘zaning Tizma- 5 navida ko‘sakning o‘rtacha vazni x = 5,44 g, Ơ = 0,096, V = 1,77%, m = 0,0096 g ga teng ekan.
1-Masala. Toshkent tibbiyot akademiyasida ta’lim olayotgan o’zbek millatiga mansub bir xil yoshdagi (17 - 20 yoshdagi) 120 ta 1- kurs talabalar (o’g’il bolalar)ning bo’yi, santimetrlar(sm) hisobida va vazni (massasi) kg. lar hisobida o’lchanganda ular quyidagi ko’rsatkichlarga ega ekanliklari ma’lum bo’ldi.
176-64, 174-61, 161-50, 169-56, 162-51, 171-60, 172-65, 176-68, 157-46, 177-62, 170-59, 171-59, 187-76, 173-61, 176-65. 182-73, 171-60. 174-65, 171-61, 173-65, 179-64, 168-58, 182-70, 173-61, 180-78, 168-57, 176-63, 164-55, 171-59, 185-73, 167-55, 167-59, 167-57, 180-68, 184-72, 177-69, 175-61, 175-61, 184-74, 171-58, 177-61, 165-56. 165-51, 178-65, 176-65, 175-63, 177-64, 183-79, 167-53, 166-57, 167-54, 174-54, 180-72, 172-60, 182-63, 176-64, 166-54, 167-56, 166-53, 174-62, 177-63, 175-63, 170-59, 173-60, 175-58, 170-59, 159-47, 174-62, 173-61, 164-59, 177-78, 179-67, 177-64, 168-59, 170-53, 178-67, 175-65, 168-57. 172-62, 176-65, 175-67, 181-77, 171-60, 178-69, 192-81, 166-58, 186-80, 179-67, 167-55, 165-54, 168-54, 167-58, 173-60, 172-59, 167-55, 175-66, 170-58, 172-61, 182-69, 173-61, 170-60, 172-60, 161-52, 174-63, 171-64, 188-72, 169-65, 176-62, 160-48, 174-69, 179-68, 184-71, 173-65, 171-59, 175-58, 165-54, 163-51, 177-65, 175-54, 183-71,
O’rganilayotgan belgilar uchun eng muhim statistik ko’rsatkichlarni hiisoblab chiqing. Alohida bo’yi bo’yicha va alohida vazni bo’yicha:
]) O’rtachi miqdorni; 2) Variasion qatorni; 3) Variasion grafikni
Dostları ilə paylaş: |