İlyas həSƏnov həNDƏSƏ Çoxbucaqlılar (Teoremlərin isbatı) baki 2009


Teorem Düzgün eyniadlı çoxbucaqlılar oxşardır və tərəflərin nisbəti radiusların və apofem­lərin nisbəti kimidir. Isbatı



Yüklə 170,34 Kb.
səhifə17/34
tarix02.01.2022
ölçüsü170,34 Kb.
#39384
1   ...   13   14   15   16   17   18   19   20   ...   34
HndsoxbucaqllarTeoremlrinisbat

Teorem

Düzgün eyniadlı çoxbucaqlılar oxşardır və tərəflərin nisbəti radiusların və apofem­lərin nisbəti kimidir.



Isbatı:

Tutaq ki, düzgün n-bucaqlıların tərəfləri, perimetrləri - xaricə çəkilmiş çevrələrin radiusları, daxilə çəkilmiş çevrələrin radiusları (apo­fem­­­ləri), - daxili bucaqlardır.



a) ABCDEF...A1B1C1D1E1F1...çoxbucaqlılarının bucaqları bərabərdir:

tərəfləri mütənasib olduğundan



onlar oxşardır.



b) Çoxbu­caq­­lının tərəflərinin xaricə çəkilmiş çevrələrin radiusundan aslılıq düstu­runa əsasən



c) Çoxbu­caq­­lınıntərəflərinin daxilə çəkilmiş çevrələrinradiusundan (apofemdən) aslılıq düsturuna əsasən



Nəticə:

Eyniadlı düzgün çoxbucaqlıların perimetrlərinin nisbəti onların radiusları və apo­fem­lərinin nisbəti kimidir. Həqiqətən = = , lakin isbat olunmuş teoremə əsasən = = olduğundan = = = .



Yüklə 170,34 Kb.

Dostları ilə paylaş:
1   ...   13   14   15   16   17   18   19   20   ...   34




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin