Koshi tengsizligi va uning tadbiqlari


KOSHI TENGSIZLIGINI UMUMLASHTIRISH



Yüklə 0,68 Mb.
səhifə7/8
tarix03.04.2023
ölçüsü0,68 Mb.
#92705
1   2   3   4   5   6   7   8
Koshi tengsizligi va uning tadbiqlari

KOSHI TENGSIZLIGINI UMUMLASHTIRISH.
Yuqorida isbot qilingan ushbu

tengsizlik, Koshi tengsizligini umumlashtirishga imkon beradi.
Buning uchun yig’indisi 1 ga teng bo’lgan sonlarni olamiz va

belgilashlarni kiritamiz. Bu yerda ixtiyoriy sonlar.
(27) va (28) ga asosan

bo’ladi. (29) tengsizlikka (28) belgilashni qo’yib,

bo’lishini ko’ramiz. (30) tengsizlik Koshi tengsizliligining umumlashmasidir, chunki xususan bo’lganda
(30) tengsizlik Koshi tengsizligiga aylanadi. (30) tengsizlikda

deymiz. Bu yerda ixtuyoriy sonlar.
Natijada (30) tengsizlik ushbu

ko’rinishni oladi.
(31) tengsizlikda, xususan bo’lganda Koshi tengsizligi kelib chiqadi. Demak, (31) tengsizlik Koshi tengsizligi umumlashmasi ekan.
YUNG, GYO’LDER VA MINKOVSKIY TENGSIZLIKLARI.
bo’lganda holda, (31) Koshi tengsizligining umumlashmasi ushbu

ko’rinish bo’ladi. Agar biz bu yerda

belgilash kiritsak, bo’ladi va (32) tengsizlik

ko’rinish oladi. (33) tengsizlikka Yung tengsizligi deyiladi.
(V.YUNG (1882-1946) ingliz matematigi).
Yuqoridagi belgilashlarga asosan Yung tengsizligida tenglik faqat
bo’lganda bajariladi.
va ixtiyoriy sonlar bo’lsin.
Ushbu

belgilashlarni kiritamiz. Quyidagi tengsizliklarni bir-biriga qo’shamiz:

natijada ushbu

tengsizlik hosil bo’ladi. Yuqoridagi belgilashlarni hisobga olib, oxirgi tengsizlikni quyidagi ko’rinishda yozish mumkin:

(34) tengsizlikka Gyo’lder tengsizligi deyiladi.(Otto Lyudvig Gyo’lder (1859-1937) nemis matematigi).Gyo’lder tengsizligida ).Gyo’lder tengsizligida desak, Koshi-Bunyakovskiy tengsizligi kelib chiqadi. Demak, Gyo’lder tengsizligi Koshi-Bunyakovskiy tengsizligining umumlashmasi ekan.
Gyo’lder tengsizliga asoslanib quyidagi baholashlarni bajaramiz:

Oxirgi tengsizlikda tenglik ishlatildi. Agar (35) baholashning ikkala tomonini ham

ifodaga bo’lsak va tenglikni e’tiborga olsak, ushbu

tengsizlik hosil bo’ladi. (36) tengsizlikka Minkovskiy tengsizligi deyiladi. (German Minkovskiy (1864-1909) nemis matematigi)



Yüklə 0,68 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin