Лабораторная работа №2 Исследование биполярного транзистора



Yüklə 2,02 Mb.
səhifə3/12
tarix14.10.2023
ölçüsü2,02 Mb.
#155187
1   2   3   4   5   6   7   8   9   ...   12
FOTOELEKTRIK BATAREYALAR LABORATORIYA 2021

2-LABORATORIYA ISHI.
Fotoelementlarni issiqlik va qorong‘ulikda VAT (volt amper tasnifi)ni olishni o‘rganish. Qatlamli o‘stirish yordamida fotoelementlarni olish texnologiyasini o‘rganish.
Fotoeffekt hodisasi yorug‘lik kvantlari metall atomlaridagi bog‘langan elektronlar bilan ta’sirlashganda yuz beradi. Elektronning atomda bog‘lanish energiyasi qancha katta bo‘lsa, fotoeffekt hodisasi sodir bo‘lishining ehtimoliyati shuncha katta bo‘ladi. Bu ehtimoliyat f – element zaryadi Z ga kuchli bog‘liq, ya’ni f~Z5. Bundan tashqi fotoeffekt hodisasi yorug‘lik tushayotgan metallning kimyoviy xossasiga, sirtining silliqligi va tozalik darajasiga bog‘liqligi tajribada aniqlandi. Fotoeffekt hodisasi yuzaga kelishining zaruriy sharti yoritilayotgan metall ustki qatlamiga tushayotgan yorug‘likning sezilarli darajada yutilishidir. Fotoeffekt hodisasi metallar, dielektriklar, yarimo‘tkazgichlar, elektrolitlarda yuzaga keladi. Ishqoriy metallar – litiy, natriy, kaliy, rubidiy, seziy fotoelektrik ta’sirga juda sezgir, ko‘zga ko‘rinadigan nurlar ta’sirida ham fotoeffekt hodisasi hosil bo‘ladi. Erkin elektronlarda fotoeffekt hodisasi yuz bermaydi, chunki erkin elektronlar prinsipial ravishda yorug‘likni yuta olmaydi.
Fotoeffekt tashqi va ichki fotoeffektlarga ajraladi. Agar yoritilayotgan modda sirtqi qatlamidan elektronlar butunlay ajralib chiqib, boshqa muhitga o‘tsa (masalan, vakuumga) bunday hodisa tashqi fotoeffekt deyiladi. Tashqi fotoeffekt hodisasi 1887-yilda G.Gers tomonidan kashf qilingan.
Agar elektronlar faqat o‘z atomi bilan bog‘lanishni “uzib” chiqib yoritilayotgan modda ichida “erkin elektron”ga aylanib qolsa bunday hodisa ichki fotoeffekt deyiladi. Ichki fotoeffekt hodisasi 1873-yilda U.Smit tomonidan kashf qilingan.
Ichki fotoeffektda tushayotgan yorug‘lik ta’sirida valent energetik zonadagi elektronlarning bir qismi o‘tkazuvchanlik zonasiga o‘tadi. Bunda yarimo‘tkazgichda tok tashuvchilar konsentrasiyasi ortadi va fotoo‘tkazuvchanlik yuzaga keladi. Ya’ni yorug‘lik ta’sirida yarimo‘tkazgichning elektr o‘tkazuvchanligi ortadi. Elektronlarning turli energetik holatlarda qayta taqsimlanishi yarimo‘tkazgichda ichki elektr maydonining o‘zgarishiga olib keladi. Bundan esa yoritilayotgan ikki turli yarim o‘tkazgichlar chegarasida elektr yurituvchi kuch (foto EYuK) paydo bo‘ladi yoki yoritilayotgan yarimo‘tkazgich va metall chegarasida ham foto EYuK yuzaga keladi. Chegara yaqinida o‘tish qatlami paydo bo‘ladi. Bu qatlam tokni faqat bir yo‘nalishda o‘tkazadi, ya’ni bu qatlam ventil xossalariga ega bo‘ladi.
Tashqi fotoeffekt metallarda kuzatiladi. Masalan, elektroskopga ulangan manfiy zaryadlangan rux plastinkasi ultrabinafsha nurlar bilan yoritilganda elektroskop tezda zaryadsizlanadi, agar plastinka musbat zaryadlangan bo‘lganda zaryadsizlanish kuzatilmas edi. Bundan ultrabinafsha nurlar metall plastinkadan (katoddan) manfiy zaryadlangan zarralarni ajratib chiqishini ko‘rish mumkin.
Tashqi fotoeffekt hodisasi kuzatiladigan qurilma sxemasi 2.2-rasmda keltirilgan. Havosi so‘rib olinib yuqori darajada vakuum hosil qilingan shisha idish ichiga anod – A va katod – K joylashtirilgan bo‘lib, ular orasida – voltmetr bilan o‘lchanadiganpotensiallar farqi qo‘yilgan. Elektr zanjirida hosil bo‘ladigan elektr toki G – galvanometr bilan o‘lchanadi. Idish devoriga kvars “darcha” qo‘yilgan. Darchadan tushgan yorug‘lik nurlari bilan katod yoritilganda elektr zanjirida tok paydo bo‘ladi.
Bu tokni yorug‘lik ta’sirida katod sirtidan ajralib anodga tomon harakatlanayotgan manfiy zaryadli elektronlar hosil qiladi. Bunday hosil qilingan tok fototok deyiladi. Agar katod yoritilmasa elektr zanjirida fototok hosil bo‘lmaydi. Yorug‘lik intensivligi va chastota doimiy bo‘lganda yorug‘lik intensivligi S1 va S2 bo‘lgan hollar uchun fototokning katod va anod orasiga qo‘yilgan potensiallar farqiga bog‘liqligini ifodalovchi egri chiziqlar 2.3-rasmda keltirilgan.
Katod va anod orasidagi maydon tezlatuvchi maydon bo‘lganda (katodda manfiy va anodda musbat) fototokning qiymati potensiallar farqi U ga proporsional ravishda rasmda keltirilgandek ortib boradi.
Potensiallar farqining biror qiymatidan boshlab fototok o‘zgarmay qoladi. Rasmda egri chiziq gorizontal to‘g‘ri chiziqqa o‘tadi. Bu chiziq maksimal tok kuchiga to‘g‘ri keladi. Tok kuchining bunday maksimal qiymati to‘yinish toki deyiladi. Yorug‘lik ta’sirida katod sirtidan ajralgan fotoelektronlarning hammasi anodga kelib tushganda to‘yinish toki hosil bo‘ladi. Potensiallar farqining bundan keyingi ortishi to‘yinish fototok kuchini o‘zgartirmaydi. To‘yinish fototok kuchi yorug‘lik ta’sirida katoddan har sekundda chiqadigan elektronlar soni bilan aniqlanadi.
Lekin katodga tushayotgan yorug‘lik intensivligi o‘zgarganda, to‘yinish tokining qiymati ham o‘zgaradi. Buni 2.3-rasmdagi grafiklardan ko‘rish mumkin. Grafiklarda It1<It2, chunki S1<S2, rasmdan ko‘rinishicha, katod va anod orasidagi potensiallar farqi nolga teng (U=0) yoki U<0 bo‘lgan hollarda ham fototok yo‘qolmaydi, ya’ni U=0 bo‘lganda ham katoddan anodga tomon harakatlanayotgan elektronlar soni mavjudligi kuzatiladi. Bunday hol katod sirtidan qandaydir boshlang‘ich tezlik bilan ajralib chiqayotgan elektronlar soni mavjudligini va ular anodga yetib bora olishini ko‘rsatadi. Bu elektronlarni to‘xtatish va fototokni yo‘qotish uchun katod va anod orasiga tormozlovchi potensiallar farqi (U=–UT) qo‘yish zarur. Tormozlovchi potensiallar farqi yorug‘lik intensivligiga bog‘liq bo‘lmaydi. Tormozlovchi potensiallar katod sirtidan chiqayotgan elektronlar kinetik energiyasining ko‘rsatgichidir. Katoddan chiqayotgan elektronlardan tezligi, ya’ni kinetik energiyasi eng kata bo‘lgan elektronlargina anodga yetib
boradi. Tormozlovchi potensial UT qo‘yilganda katod sirtidan maksimal tezlik max bilan ajralgan elektronlar bu tezligini to‘liq ravishda yo‘qotadi, bunda fototok ham yo‘qoladi. U vaqtda energiyaning saqlanish qonuniga asosan quyidagi munosabatni yozish mumkin:



2.2-rasm

eUT=2memax2 (2.5)





2.3-rasm
Bu formulada me – elektron massasi, e –uning tezligi, max – elektronning maksimal tezligi, UT – tormozlovchi potensial.
Tormozlovchi potensiallar farqining qiymatlarini tajribada o‘lchab, elektronlarning bu qiymatlarga to‘g‘ri keladigan kinetik energiyalarini (2.5) formula yordamida hisoblash mumkin.
2.3-rasmdagi grafiklarda ko‘rsatilgan to‘yinish fototokining mavjudligi va to‘yinish fototoki kuchining It yorug‘lik intensivligiga to‘g‘ri proporsionalligi, katod sirtidan vaqt birligida urib chiqarilgan elektronlar soni yorug‘lik intensivligiga proporsionalligini ko‘rsatadi. Bunday bog‘lanish Stoletov tomonidan tajribada aniqlangan.
2.4-rasmda yorug‘lik chastotasi va tormozlovchi potensiallar farqi orasidagi bog‘lanishni ifodalovchi grafik tasvirlangan. Bu grafik tajriba natijalari asosida chizilgan. Rasmdan ko‘rinishicha, tormozlovchi potensiallar farqi UT ning qiymati (ya’ni fotoelektronlarning maksimal tezligi) va yorug‘lik chastotasi orasida chiziqli bog‘lanish mavjud. Chastotaning biror q qiymatida fotoelektronlarning tezligi nolga teng bo‘ladi. Chastotaning bu qiymati chegara hisoblanadi. Bu shunday chegaraviy chastotaki, bu chastotadan past chastotalarda fotoeffekt kuzatilmaydi. q – fotoeffekt sodir bo‘lishining chegaraviy chastotasi yoki fotoeffektning “qizil” chegarasi deyiladi, ya’ni ch=q bo‘ladi. <q chastotali yorug‘lik fotoeffekt hodisasini yuzaga keltirmaydi. Fotoeffekt >q chastotali yorug‘lik ta’sirida kuzatiladi. Chegaraviy chastota (ch)ga mos bo‘lgan to‘lqin uzunligi q ham fotoeffektning qizil chegarasi deb aytiladi.
Stoletov va boshqa olimlar tomonidan fotoeffekt hodisasini o‘rganishda o‘tkazilgan tajribalar natijalari asosida tashqi fotoeffekt uchun quyidagi asosiy qonunlar aniqlandi:
1. Yorug‘lik katod sirtidan vaqt birligida urib chiqargan elektronlar soni katod sirtiga tushayotgan yorug‘lik intensivligiga to‘g‘ri proporsionaldir.
2. Katod sirtidan chiqayotgan elektronlarning kinetik energiyasi noldan boshlab maksimal 2memax2 qiymatgacha bo‘ladi. Bu energiya yorug‘lik intensivligiga bog‘liq emas, katodga tushayotgan yorug‘lik chastotasiga chiziqli bog‘lanishda bo‘ladi.
3. Har bir fotokatod materiali uchun biror chegaraviy chastota ch mavjudki, bu chastotadan past chastotalarda fotoeffekt hodisasi vujudga kelmaydi. ch ning qiymati yorug‘lik intensivligiga va katodni yoritish vaqtiga bog‘liq bo‘lmaydi.
Quyidagi jadvalda ba’zi bir metallar uchun chiqish ishi A (elektron-voltlarda) va shu metallar uchun fotoeffektning qizil chegarasi 0 (mikronlarda) qiymatlari keltirilgan.

2.1-jadval



Metall

0 (mk)

A (eV)

Platina

0,235

5,29

Volfram

0,276

4,5

Rux

0,29

4,19

Toriy

0,364

3,41

Natriy

0,552

2,25

Seziy

0,62

1,89

Volframga surtilgan seziyli plyonka

0,913

1,36

2.1-jadvaldan ko‘rinadiki, volfram ustidagi seziyli plyonkada infraqizil nurlar ta’sirida ham fotoeffekt hosil bo‘ladi, natriyda fotoeffekt ko‘zga ko‘rinadigan va ultrabinafsha nurlar ta’sirida, ruxda esa ultrabinafsha nurlar ta’sirida hosil bo‘ladi.





2.4-rasm.



Yüklə 2,02 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   ...   12




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin