Suyuqlik harakati tenglamalari. F ( t ) hududidagi t ∈ ( t 0 , ∞ ) uchun quyidagi tenglamalar bajariladi: fikrlar Navier - Stokes:
r F ∂tv _ _ + ( v · ∇ x ) v = div x P + r F f , (24)
div x v = 0 , (25)
P = − p I + 2µF _ _ D ( v ) , 2 D ( v ) = ∇xv _ _ + ∇ x v T , (26) Bilan mintaqaviy holat "yopishish":
v ( x , t ) = 0 da x ∈ ∂ Ō , t ∈ [ t 0 , ∞ ) . (27)
Tenglamalar harakat jismlar. Mintaqalar S ( t ) Va F ( t ) _ A Shuningdek chegara D( t ) evolyutsion rut tomonidan qonun
S ( t ) = ps ( S ∗ , t ) , D( t ) = ps (D ∗ , t ) , F ( t ) = Ō \ S ( t ) , (28)
Qayerda ko'rsatish p ›→ ps ( p , t ) = x c ( t ) + R ( t ) p aniqlaydi qiyin harakat, ya'ni R aylanish operatori: RR T = R T R = I va det R = 1 . Operator R va vektor ō ulangan nisbat R˙ _ R T a = ō × a , Qayerda _ a — o'zboshimchalik bilan vektor. Funksiyalar xc ( t ) _ va ō ( t ) qondirish tenglamalar
∫
Xonim _ x¨c _ _ =
∫
D( t )
g ds x + r S
∫
S ( t )
f d x , (29)
Qayerda
d ( J
dt S
ō ) =
D( t )
( x − x c ) × g ds x
+ r S
∫S ( t ) _
( x − xc ) _ × f d x , (30)
∫
JS _ ( t ) = r S
S ( t )
| x − x c | 2 I − ( x − xc ) _ ⊗ ( x − xc ) _ d x = r S ∫
| p | 2 I − R p ⊗ R p d p , (31)
2
S∗
g = P n + r F v ( V − v ) · n , (32)
V ( x , t ) = x ˙ c ( t ) + R˙ _ ( t ) R T ( t ) x − xc ( t ) _ = x ˙ c ( t ) + ō ( t ) × x − xc ( t ) _ — maydon qattiqning kuchi bilan _ harakatlar jismlar, n — vektor tashqi normalar Kimga D( t ) .
Tenglama chiziqli elastiklik. Da t ∈ ( t 0 , ∞ ) vektor maydon ē = ē ( p , t ) elastik deformatsiyalar tanasi hisoblanadi qaror Keyingisi vazifalari:
t
r S ∂ 2 ē = di v p S ( ē ) + r S f ∗ − p, p ∈ S ∗ , (33)
S ( ē ) n ∗ = g ∗ , p ∈ D ∗ , (34)
T T∗ ∗ ∗
Qayerda S ( ē ) = l I div p ē + 2 mk e ( ē ) , e ( ē ) = ( ∇l ē + ∇l _ ē T ) / 2 , l Va mk — doimiy Cho'loq,
n ( p , t ) = R ( t ) n ps ( p , t ) , t — vektor tashqi normalar Kimga D , g ( p , t ) = R ( t ) g ps ( p , t ) , t ,
f ∗ ( p , t ) = R T ( t ) f ps ( p , t ) , t , p ( · , t ) ∈ R ( S ∗ ) Va
∫·
∫·
∫S ∗ _
PH z d p =
D ∗
g ∗ z ds p + r S
S ∗
f ∗ · z d p (35)
Uchun hamma t ∈ [ t 0 , ∞ ) Va hamma z ∈ R ( S ∗ ) .
Vaziyat yelimlash tezliklar Da t ∈ [ t 0 , ∞ ) tezlik suyuqliklar v Va tezlik elastik deformatsiyalar ∂ t ē ulangan yoqilgan D( t ) nisbat
.
v ( x , t ) = V ( x , t ) + R ( t ) ∂ t ē ( p , t ) p = R T ( x - x c ) . (36)
Shartlar hamjihatlik. Uchun hamma t ≥ t 0 vektor maydon ē qanoatlantiradi shartlar:
∫
∫ ∂ t ē d p = 0 , ∫ p × ∂ t ē d p = 0 , (37)
S ∗ S ∗
·
n ∗ ( p ) ∂ t ē ( p , t ) ds p = 0 . (38)
D ∗
Boshlang'ich sharoitlar. IN boshlang'ich moment vaqt t = t 0 Biz qo'yaylik
v ( x , 0) = v 0 ( x ) da x ∈ F ( t 0 ) , (39)
ē ( p , t 0 ) = ē 0 ( l ) , ∂ t ē ( l ), t 0 ) = ē 1 ( p ) da p ∈ S ∗ , (40)
x c ( t 0 ) = x 0 , x ˙ c ( t0 ) _ = x 1 , R ( t 0 ) = R 0 , R ˙ ( t0 ) _ = R 1 , (41)
Qayerda v 0 , ē 0 , ē 1 , x 0 , x 1 , R0 , _ R 1 bor berilgan. Shu esta tutilsinki Nima V kuch (28) mashq qilish
x 0 va R 0 qachon tananing holatini to'liq aniqlaydi t = t 0 .
§ 3.2. Energiya shaxs
F
x
F (t)
Γ(t)
F (t)
Keling, ko'paytiraylik tenglama (24) skaler yoqilgan v Va integratsiya qilaylik tomonidan mintaqa F ( t ) . Foydalanish zuya (25), (26) Va (23) Bilan s = r F / 2 (T. e. (32)), Biz olamiz
F
2
dt
F (t)
r F d ∫
| v | 2 d x + 2 mk ∫
| D ( v ) | 2 d x = − ∫
v · g ds + ∫
r f · v dx._ _ _ (42)
∫· | −
IN kuch (37) Va (34) integratsiya tomonidan mintaqa S ∗ tenglamalar (33), ko'paytirildi skaler yoqilgan ∂tķ , _ _ beradi
S∗
d ∫
r S | ∂ ē | 2 + l| div
ē | 2 + 2 mk| e ( ē ) | 2 d p = ∫
g · ∂ ē ds
+ r ∫
f · ∂ ē d p =
2
t
∗
t
S
∗
t
∫
ξ
Γ∗
ξ
S∗
=
D( t )
g R ∂ t ē p = R T ( x xc ) _ ds x + r S
S ( t )
f · R ∂ t ē ( p , t ) . p = R T ( x − x c ) dx._ _ _ (43)
Kimdan tenglamalar (29) Va (o'ttiz) kerak Nima
|
Xonim _ d x ˙
∫
2 dt c
2 =
∫|
D( t )
g · x ˙ c
ds x
+ r S
∫S ( t ) _
f · x ˙ c
d x , (44)
·
ō d J
dt S
Shu esta tutilsinki Nima
ō =
D( t )
g · ō × ( x − xc ) _ ds x
·
1 d
+ r S
∫S ( t ) _
1
f · ō × ( x − xc ) _ dx._ _ _ (45)
S
Biroq
ō d J
dt S
ō =
2 dt
ō · JS _
ō +
2 ō · J˙ _ ō .
S
ō · J˙ _
ō = − 2 r S
∫S ∗ _
( ō · R˙ _ p ) ( R b · ō ) d p = 0 ,
∫
Shunday qilib _ Qanaqasiga _ ō · R˙ _ p = ō · ( ō × R p ) = 0 . Shunung uchun (45) mumkin _ _ qayta yozish Shunday qilib :
d
dt ō · JS _
ō =
D( t )
g · ō × ( x − xc ) _ ds x
+ r S
∫S ( t ) _
f · ō × ( x − xc ) _ dx._ _ _ (46)
d r F ∫
| v | 2 d x + Xonim _ | x ˙
1
2
2
S
c
| + ō · J ō +
F (t)
2
2
t
F
S∗
ξ
F (t)
+ ∫ r S | ∂ ē | 2 + l| div
Dostları ilə paylaş: |