Matematika va informatika



Yüklə 336,71 Kb.
səhifə2/6
tarix24.03.2023
ölçüsü336,71 Kb.
#89656
1   2   3   4   5   6
Aniq integtalni pog\'onali

Kurs ishining maqsadi: Talabalarga matematik analizni o’qitishning an’anaviy talim metodi haqida umumiy ma'lumotlar va ularning o'ziga xos xususiyatlarini tushuntirish, ular yordamida dasturi tuzishni va uni o‘qiy olishni o‘rgatish orqali talabalarni matematik analiz fanlariga qiziqishlarini yanada oshirish.
Kurs ishining vazifasi: Bo’lajak matematik analiz o’qituvchilariga an’anviy talim metodi bo’yicha tayyorgarlik tizimi mazmunining nazariy va amaliy holatini o‘rganish va tahlil qilish; -talabalarga turli loyihalarni tasvirlashdagi o’ziga xos xususiyatlarni va ularning turlari haqida tushunchalar berish va takomillashtirish; - talabalarning mavzu yuzasidan bilim, ko'nikma va malakasini shakllantirish.
Kurs ishining ob’yekti: Oliy ta’lim tizimida “Matematika va informatika” bakalavriyat ta’lim yo‘nalishi talabalariga nazariy va amaliy ta’lim berish jarayoni.
Kurs ishining predmeti: Bo‘lajak pedagoglarni tayyorlash
bo‘yicha tahsil olayotgan talabalarning matematik analiz ilmini egallash
jarayonidagi ta’lim mazmuni va texnologiyasi.
Kurs ishining tuzilishi va tarkibi: Kurs ishi kirish, ikki bob, to’rt paragraf,
xulosa va foydalanilgan adabiyotlar ro‘yxatidan iborat.

I BOB. ANIQ INTEGRALNI YECHISH USULLARI. POG’ONALI FUNKSIYALAR VA ULARNI TEKSHIRISH

1.1 Aniq integralni yechish usullari


Ixtiyoriy funksiya biror oraliqda berilgan bo`lib, u uzluksiz bo`lsin. oraliqda ta ketma- ket kuqtalar olamiz. U holda, bu nuqtalar oraliqni ta qismga ajratadi. Bunda va deb olamiz. Hosil bo`lgan elementar kesmalarni quyidagicha ifodalaymiz:
belgilashlar kiritamiz. U holda (1) va (2) ni quyidagicha yozish mumkin:
yoki
.
Aytaylik, u=(x) funksiya (a,b) intervalda, y=f(u) funksiya esa (c;d) da aniqlangan bo‘lib, bu funksiyalar yordamida y=f((x)) murakkab funksiya tuzilgan bo‘lsin (bunda, albatta, x(a,b) da u=(x)(c,d) bo‘lishi talab qilinadi).
Teorema. Agar u=(x) funksiya x(a,b) nuqtada hosilaga ega, y=f(u) funksiya esa u=(x) nuqtada hosilaga ega bo‘lsa, u holda y=f((x)) murakkab funksiya x nuqtada hosilaga ega va
(f((x)))’=f’(u)’(x)
formula o‘rinli bo‘ladi.
Isboti. u=(x) funksiya x nuqtada hosilaga ega bo‘lganligi uchun uning x nuqtadagi orttirmasini (2.1) formuladan foydalanib
u=’(x)x+x
ko‘rinishda yozish mumkin, bu erda x0 da 0.
Shunga o‘xshash, y=f(u) funksiyaning u nuqtadagi orttirmasini
y=f’(u)u+u (3)
ko‘rinishda yozish mumkin, bunda u0 da 0.
So‘ngi (3) tenglikdagi u o‘rniga uning (2) tenglik bilan aniqlangan ifodasini qo‘yamiz. Natijada
y=f’(u)(’(x)x+x)+(’(x)x+x)= f’(u)’(x)x+(f’(u)+’(x)+)x
tenglikka ega bo‘lamiz.
Agar x0 bo‘lsa, (2) tenglikdan 0 va u0 bo‘lishi, agar u0 bo‘lsa, u holda (3) tenglikdan 0 ekanligi kelib chiqadi. Bulardan esa x0 da f’(u)+’(x)+ cheksiz kichik funksiya ekanligi kelib chiqadi, uni  bilan belgilaymiz.
Shunday qilib, y=f’(u)’(x)x+x tenglik o‘rinli. Bundan
= f’(u)’(x)+ va =f’(u)’(x) o‘rinli ekanligi kelib chiqadi.
Bu esa y’= f’(u)’(x) ekanligini isbotlaydi.
Misol. y= funksiyaning hosilasini toping.
Yechish. Bu erda y=u4, u= . Demak, y’=(u4)’ ’= =4u3 =8 .
Amalda (1) tenglikni
yoki yx’=yu’ux
ko‘rinishda yozib, quyidagi qoida tarzida ifodalaydi:
Murakkab funksiyaning erkli o‘zgaruvchi bo‘yicha hosilasi oraliq o‘zgaruvchi bo‘yicha olingan hosila va oraliq o‘zgaruvchidan erkli o‘zgaruvchi bo‘yicha olingan hosilalar ko‘paytmasiga teng.
Bu qoidani quyidagicha talqin qilish mumkin: agar berilgan nuqtada y o‘zgaruvchi u ga nisbatan yu’ marta tez, u esa x ga nisbatan ux’ marta tez o‘zgarsa, u holda y o‘zgaruvchi x ga nisbatan yu’ux’ marta tez o‘zgaradi, ya’ni yx’=yu’ux’.
Yuqoridagi qoida uchta, umuman chekli sondagi hosilaga ega bo‘lgan funksiyalar kompozitsiyasi uchun ham o‘rinli. Masalan, agar y=f(u), u=(t), t=h(x) bo‘lsa, u holda yx’=yu’ut’tx’ tenglik o‘rinli bo‘ladi.
Faraz qilaylik y=f(x) funksiya [a;b] kesmada monoton o‘suvchi, (a;b) intervalda y’=f’(x) hosilaga ega va x(a,b) uchun f’(x)0 bo‘lsin. Quyidagi belgilashlarni kiritamiz: f(a)=, f(b)=. U holda y=f(x) funksiya uchun teskari funksiyaning mavjudligi va uzluksizligi haqidagi teorema shartlari bajariladi, chunki y=f(x) funksiyaning uzluksizligi uning hosilaga ega ekanligidan kelib chiqadi. Shunday qilib, [;] kesmada y=f(x) funksiyaga nisbatan teskari bo‘lgan x=(y) funksiya mavjud bo‘ladi.
Teskari funksiya argumenti y ga y0 orttirma beramiz. U holda x=(y) funksiya biror x=(y+y)-(y) orttirma oladi va teskari funksiyaning monotonligidan x0, uzluksizligidan esa y0 da x0 ekanligi kelib chiqadi.
Endi x=(y) funksiyaning hosilasini topamiz. Yuqorida aytilganlarni e’tiborga olsak, hosilaning ta’rifiga ko‘ra
, demak xy’=’(y)=1/f’(x) formula o‘rinli ekan.
Shunday qilib, quyidagi teorema isbot bo‘ldi.
Teorema. Agar y=f(x) funksiya [a;b] kesmada monoton o‘suvchi, (a;b) intervalning har bir nuqtasida noldan farqli y’=f’(x) hosilaga ega bo‘lsa, u holda bu funksiyaga teskari bo‘lgan x=(y) funksiya (f(a);f(b)) intervalda hosilaga ega va y(f(a);f(b)) uchun uning hosilasi 1/f’(x) ga teng bo‘ladi.
Ushbu teorema f(x) funksiya kamayuvchi bo‘lganda ham o‘rinli ekanligini isbotlashni o‘quvchilarga qoldiramiz.

Demak, teskari funksiya hosilasini hisoblash qoidasi


(4)
formula bilan ifodalanadi.
Asosiy elementar funksiyalarning hosilalari
1. y=x (x>0) darajali funksiyaning hosilasi
Bu funksiyaning x nuqtadagi orttirmasi y=(x+x)-x=x(( )-1) ga teng va bo‘ladi. Ma’lumki, . Shuning uchun . Bundan funksiyaning x nuqtadagi hosilasi mavjud va y’=x-1 bo‘ladi.
Demak, (x)’=x-1 va d(x)=x-1dx formulalar o‘rinli.
Murakkab funksiyaning hosilasini hisoblash va differensiali formulalarini foydalangan holda, (u(x)) ko‘rinishdagi murakkab funksiya uchun quyidagi formulalarni yozish mumkin:
((u(x)))’=(u(x))-1u’(x), d((u(x)))= (u(x))-1u’(x)dx.
Masalan y=(x2+1)3 funksiyaning hosilasini topish talab qilinsin. Bu misolda u(x)=(x2+1), =3. Demak, yuqoridagi formulaga ko‘ra
y’=3(x2+1)2((x2+1)’=3((x2+1)22x=6x(x2+1)2 bo‘ladi.

y=ax (a>0, a1) ko‘rsatkichli funksiya uchun y=ax+x -ax=ax(ax-1) va .
Ma’lumki, . Shuning uchun = =axlna mavjud. Demak (ax)’=axlna va d(ax)’=axlnadx, xususan, (ex)’=ex va d(ex)’=exdx formulalar o‘rinli ekan.
Ko‘rinib turibdiki, y=ex funksiya ajoyib xossaga ega: uning hosilasi o‘ziga teng ekan.
Misol. y=ex funksiya grafigi Oy o‘qini qanday burchak ostida kesib o‘tadi?
Yechish. Funksiya grafigi Oy o‘qini (0;1) nuqtada kesib o‘tadi. Funksiya grafigiga shu nuqtasida o‘tkazilgan urinmaning burchak koeffitsientini topamiz: y’=ex va y’(0)=e0=1, bundan esa urinmaning Ox o‘qi bilan kattaligi /4 ga teng bo‘lgan burchak tashkil qilishi kelib chiqadi. U holda urinma Oy o‘qi bilan ham kattaligi /4 ga teng bo‘lgan burchak tashkil qiladi.
1-rasmda y=ex funksiya grafigi berilgan, bunda funksiya grafigi 10-rasm
x=0 nuqta atrofida y=x-1 to‘g‘ri chiziqqa urinadi.
Yuqoridagi misolda olingan natija e soniga quyidagicha ta’rif berishga imkon beradi: e soni deb ordinata o‘qini /4 burchak ostida kesib o‘tuvchi ko‘rsatkichli funksiyaning asosiga aytiladi.
au(x) (a>0, a1) funksiya uchun quyidagi formulalarning o‘rinli bo‘lishini ko‘rish qiyin emas: (au(x))’= au(x)u’(x)lna, d(au(x))= au(x)u’(x)lnadx.
Masalan, (35x-3)’=35x-3(5x-3)’ln3=535x-3ln3.
y=logax (a>0, a1, x>0) logarifmik funksiyaning hosilasi.
Bu funksiya x=ay funksiyaga nisbatan teskari funksiya bo‘lgani uchun teskari funksiyaning hosilasini topish qoidasiga ko‘ra ya’ni . Xususan, formula o‘rinli.
Bu formulalardan quyidagi muhim xulosani chiqarish mumkin: =0, ammo (logax)’ geometrik nuqtai nazardan y=logax funksiya grafigiga abssissasi x ga teng bo‘lgan nuqtada o‘tkazilgan urinmaning burchak koeffitsientiga teng. Shunday qilib, =0, ya’ni =0, bu esa yyetarlicha katta x lar uchun urinma abssissalar o‘qiga «deyarli parallel» bo‘lishini anglatadi. Bu holni funksiya grafigini chizishda hisobga olish zarur.
logau(x) funksiya uchun quyidagi formula o‘rinli: .
1) y=sinx funksiyaning hosilasi. Funksiyaning x nuqtadagi orttirmasini sinuslar ayirmasi formulasidan foydalanib topamiz:
.
Funksiya orttirmasining argument orttirmasiga nisbati
ga teng. Bu tenglikda birinchi ajoyib limit va cosx funksiyaning uzluksizligini e’tiborga olgan holda limitga o‘tsak,
bo‘ladi.
Demak, (sinx)’=cosx formula o‘rinli.
2) y=cosx funksiyaning hosilasi. Bu funksiyaning hosilasini topish uchun cosx=sin(x+/2) ayniyat va murakkab funksiyaning hosilasini topish qoidasidan foydalanamiz. U holda
(cosx)’=(sin(x+/2))’=cos(x+/2) (x+/2)’=cos(x+/2)1=cos(x+/2).
cos(x+/2)=-sinx ayniyatni e’tiborga olsak, quyidagi formulalarning o‘rinli ekanligi kelib chiqadi:
(cosx)’=-sinx.
y=sinx va y=cosx funksiyalarning hosilalarini quyidagi fizik mulohazalardan foydalanib ham keltirib chiqarish mumkin. Faraz qilaylik birlik aylanada burchak tezligi =1 rad/s bo‘lgan nuqta harakatlanayotgan bo‘lsin (11-rasm). Vaqtning boshlang‘ich momentida nuqta A0, vaqtning t momentida A holatda bo‘lsin. U holda A0A yoyning uzunligi t ga, A0OA markaziy burchak t radianga teng bo‘ladi. Sinus va kosinusning ta’riflariga ko‘ra A nuqtaning ordinatasi sint, abssissasi esa-cost ga teng.
Demak, A nuqtaning abssissa o‘qidagi proeksiyasi B nuqta x=sint qonuniyat bilan, ordinata o‘qidagi proeksiyasi S nuqta y=cost qonuniyat bilan harakat qiladi. Shu harakatlarning tezliklarini topamiz.
Ma’lumki, A nuqtaning chiziqli tezligi v=R formula bilan ifodalanadi. Bizning holimizda =1, R=1 bo‘lganligi sababli v=1 bo‘ladi. Chiziqli tezlikni ikkita- gorizontal va vertikal- tashkil etuvchilarga ajratamiz. A nuqta tezligining vektori , bu erda | |=1, aylanaga A nuqtada o‘tkazilgan urinma bo‘ylab yo‘nalgan. Shu sababli Ox o‘qi bilan t+/2, Oy o‘qi bilan t burchak tashkil qiladi. Demak, uning Ox o‘qiga proeksiyasi (ya’ni B nuqtaning tezligi) vx=cos(t+/2)= =-sint ga, Oy o‘qiga proeksiyasi vy=cost ga teng bo‘ladi.
Tezlik yo‘ldan vaqt bo‘yicha olingan hosila bo‘lganligi, B nuqtaning harakat qonuni x=cost, tezligi vx=-sint ekanligini e’tiborga olsak, (cost)’=-sint degan xulosaga kelamiz.
Shunga o‘xshash, S nuqtaning harakat qonuni y=sint, tezligi vx=cost ekanligini e’tiborga olsak, (sint)’=cost degan xulosaga kelamiz.
3) y=tgx va y=ctgx funksiyalarning hosilalari. Ushbu funksiyalarning hosilalarini topish uchun bo‘linmaning hosilasini topish qoidasidan foydalanamiz:
.
Xuddi shunga o‘xshash formulani ham keltirib chiqarish mumkin.
Buni mashq sifatida o‘quvchilarga qoldiramiz.
Trigonometrik funksiyalarning argumentlari x erkli o‘zgaruvchining u(x) funksiyasi bo‘lsa, u holda murakkab funksiyaning hosilasini topish qoidasiga ko‘ra quyidagi formulalar o‘rinli bo‘ladi:
(sinu)’=u’cosu, (cosu)’=-u’sinu, .
Misol. y=sinx funksiya grafigi koordinatalar boshida Ox o‘qi bilan qanday burchak tashkil etadi?
Yechish. Buning uchun y=sinx funksiya grafigiga abssissasi x=0 bo‘lgan nuqtada o‘tkazilgan urinmaning burchak koeffitsientini topamiz: y’=cosx, demak f’(0)=cos0=1, burchak koeffitsienti tg=1, bundan izlanayotgan burchak /4 ga teng.
Misol. y=tgx funksiya grafigi koordinatalar boshida Ox o‘qi bilan qanday burchak tashkil etadi?
Yechish. Buning uchun y=tgx funksiya grafigiga abssissasi x=0 bo‘lgan nuqtada o‘tkazilgan urinmaning burchak koeffitsientini topamiz: y’=(tgx)’=sec2x, demak f’(0)=sec20=1, burchak koeffitsienti tg=1, bundan izlanayotgan burchak /4 ga teng.
Bu misollarda olingan natijalarni y=sinx va y=tgx funksiya grafiklarni chizishda e’tiborga olish kerak. Rasmlarda y=sinx va y=tgx funksiya grafiklari keltirilgan. Bu funksiya grafiklari koordinatalar boshida y=x to‘g‘ri chiziqqa urinadi.
Teskari funksiyaning hosilasi haqidagi teoremadan foydalanib, y=arssinx (-1x1) funksiyaning hosilasini topaylik.
Bu funksiyaga teskari bo‘lgan x=siny funksiya da monoton o‘suvchi va intervalda hosilaga ega, hamda bu intervalning har bir nuqtasida hosila noldan farqli: . Shuning uchun . Endi intervalda cosy>0 va bunda cosy= formula o‘rinli bo‘lganligi uchun y’x= bo‘ladi.
Demak,
, (-1formula o‘rinli.
Endi y=arccosx (-1x1) funksiyaning hosilasi uchun formula keltirib chiqaramiz. Bu funksiyaga teskari bo‘lgan x=cosy funksiya [0,] da monoton kamayuvchi, (0;) da hosilaga ega bo‘lib, bu intervalning har bir nuqtasida noldan farqli x’y=-siny hosilaga ega. Demak, teskari funksiyaning hosilasi haqidagi teorema shartlari o‘rinli. Shu sababli (4) ga ko‘ra ham o‘rinli bo‘ladi. (Bu erda (0;) da siny= ekanligidan foydalandik).
Shunday qilib, (arccosx)’= (-1 Ma’lumki, y=arctgx funksiyaning qiymatlar to‘plami intervaldan iborat. Shu intervalda unga teskari bo‘lgan x=tgy funksiya mavjud va bu funksiyaning hosilasi noldan farqli. Teskari funksiyaning hosilasi haqidagi teoremadan foydalansak,

bo‘ladi.
Demak, quyidagi formula o‘rinli:
(arctgx)’= .
Xuddi yuqoridagi kabi y=arcstgx funksiya uchun
(arcstgx)’=-
formulaning o‘rinli ekanligini ko‘rsatish mumkin.
Teskari trigonometrik funksiyalarning argumentlari x erkli o‘zgaruvchining u(x) funksiyasi bo‘lsa, u holda murakkab funksiyaning hosilasini topish qoidasidan quyidagi formulalar kelib chiqadi:
(arcsinu(x))’= ; (arccosu(x))’=- ;
(arctgu(x))’= ; (arcstgu(x))’=- ;

Yüklə 336,71 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin