O`zbekiston respublikasi aloqa, axborotlashtirish va telekommunikatsiya texnologiyalari davlat ko`mitasi



Yüklə 462,91 Kb.
səhifə9/11
tarix07.01.2024
ölçüsü462,91 Kb.
#201929
1   2   3   4   5   6   7   8   9   10   11
zzzzz

Misol 3.


x x x
3 15 35
x x
63 99
x
143
 12
tenglamani yeching.
  • solve((x/3+x/15+x/35+x/63+x/99+x/143)=12,x);


26


Misol 4.


3x 2 2x 3  2,5x  2  0
tenglamani yeching.

4 2
  • solve(((3*x-2)/4+(2*x+3)/2-2.5*x+2)=0,x);


4.

Agar tenglama bir necha yechimga ega bo`lsa, name buyrug’i orqali boshqa hisoblash amallarini bajarishda yechimlarni tanlab olamiz. Berilgan tenglamaning k- yechimini aniqlash uchun kvadrat qavslar ichida yechim tartibini ko`rsatish lozim: name[k]. Masalan:


  • x:=solve(x^2-a=0,x);


x :  a ,


  • x[1];



  • x[2];





  • x[1]+x[2];


0
Misol 1. Tenglamani yeching.

1998x2  2000x  2  0





  • solve(1998*x^2-2000*x+2=0,x);


1, 1
999


  • x:=solve(1998*x^2-2000*x+2=0,x);


x := 1, 1
999


  • x[1];




  • x[2];


1
1




999

Misol.


x1 va
x sonlari 3x2  2x  6  0
tenglamaning ildizlari bo’lsa, ildizlari


2
yig’indisi va ayirmasini toping.
  • x:=solve(3*x^2-2*x-6=0,x);


  • x[1];


x := 1 + 1
3 3
19 , 1 - 1
3 3

1 + 1
3 3


  • x[2];


1 - 1
3 3


  • x[1]+x[2];



2
3


  • x[1]-x[2];



2
3


Tenglamalar sistemasini yechish
Tenglamalar sistemasi solve({eq1,eq2,…},{x1,x2,…}),buyrug’I yordamida yechiladi, faqat aylana qavslar ichidagi 1- figurali qavs ichida tenglamalar, ikkinchi figurali qavs ichida esa tenglamaning o`zgaruvchilari kiritiladi. Agar sizga tenglamaning yechimlari bilan bog’liq ravishda keyingi hisoblashlar kerak bo`lsa, solve komandasi name ning qandaydir nomini ifodalaydi. So`ngra assign(name) buyrug’i uni to`ldiradi. Shundan keyin yechimlar ustida matematik amallar bajarish mumkin. Masalan:
    • s:=solve({a*x-y=1,5*x+a*y=1},{x,y});


s:={ x a 1 , y a 5 }
5  a2 5  a2
    • assign(s); simplify(x-y);


6
5  a 2


x y 2 y 5
Misol 1. Tenglamalar sistemasini yeching 2 3 2



Maple dasturida yechish:




3x


 2 y  0
 2
  • s:=solve({(x+y)/2-2*y/3=5/2, 3*x/2+2*y=0},{x,y});


s := {y = -3, x = 4}



Javob: (4, -3)
Misol 2. (x,y) sonlar jufti toping.

Maple dasturida yechish:


2x y 5




3x  2 y  4
sistemaning yechimi bo’lsa, x – y ni
  • s:=solve({2*x-y=5,3*x+2*y=4},{x,y});


s := {x = 2, y = -1}


  • assign(s);simplify(x-y);


3

Javob: x – y =3


3x y 45


Misol 3. Agar x  3y  15 bo’lsa, x+y+z nimaga teng.


3z x  6


Maple dasturida yechish:

  • s:=solve({3*x+y=45, z+3*y=-15, 3*z+x=6},{x,y,z});


s := {z = (-24)/7, y = (-27)/7, x = 114/7} yoki
s : z 24 , y 27 , x 114
 

7

7

7
 
  • assign(s);simplify(x+y+z);


9

Javob: x + y + z = 9


Chiziqli va ikkinchi darajali tenglamalar sistemasining yechimini Maple tizimida osongina topish imkoniyati mavjud. Quyidagi Maple tizimida bajarilgan misollar yechimi bilan birgalikda keltirilgan.

Misol 1. Sistemadan
x y ni toping
x 2y 2xy  8


x y  3



Maple dasturida yechish:

  • s:=solve({x*x+y*y+x*y=8, x+y=3},{x,y});


s := {y = RootOf (_Z 2 - 3 _Z + 1, label = _L1), x = -RootOf (_Z 2 - 3 _Z + 1, label = _L1) + 3}


  • assign(s); simplify(x*y);

1


Javob: x y =1





Misol 2. Sistemaning yechimini toping.


Maple dasturida yechish:


x 2y 2  2xy  1


x y  3
  • s:=solve({x^2+y^2-2*x*y=1, x+y=3},{x,y});


s := {y = 1, x = 2}, {y = 2, x = 1}
  • s[1];


  • s[2];


Javob: (2;1) va (1;2)
{y = 1, x = 2}

{y = 2, x = 1}





Misol 3. Ushbu
x y 3


x 2y 2  6

tenglamalar sistemasidan x ni toping.





Maple dasturida yechish:

  • s:=solve({x^2-y^2=6, x+y=3},{x,y});


s : y 1 , x 5
 

2
2
  • assign(s); simplify(x);



5
2

Javob: x=2,5





Misol 4. Tenglamalar sistemasini yeching.


Maple dasturida yechish:


y 4 2


x 2 y  2
  • s:=solve({y+4=2, (x^2)*y=-2},{x,y});


s := {y = -2, x = 1}, {y = -2, x = -1}


  • s[1];


  • s[2];


Javob: (-1; -2), (1; -2)
{y = -2, x = 1}

{y = -2, x = -1}



Misol 4. Agar
x y  5 va
xy  7
bo’lsa,
x3 y xy 3
ning qiymati qancha bo’ladi?



Maple dasturida yechish:

  • s:=solve({x-y=5, x*y=7},{x,y});


s := {y = RootOf (_Z 2 + 5 _Z - 7, label = _L1), x = RootOf (_Z 2 + 5 _Z - 7, label = _L1) + 5}


  • assign(s); simplify(x^3*y+x*y^3);


Javob:
x3 y xy 3 =273
273


Misol 5. Agar
a b  12
va  ab a2  144 bo’lsa, a ning qiymati qanchaga teng?

Maple dasturida yechish:

  • k:=solve({a-b=12, (-a)*b+a^2=144}, {a,b});


k := {a = 12, b = 0}


  • assign(k); simplify(a);


Javob: a=12 Misol 6. Agar toping.
12


x2  4xy y2  4  2xy va


x y 12

bo’lsa, xy ning qiymatini


Maple dasturida yechish:

  • k:=solve({x^2-4*x*y+y^2=4-2*x*y, x+y=12}, {x,y});


k := {y = 5, x = 7}, {y = 7, x = 5}


  • assign(k); simplify(x*y);


35



Javob: xy =35
Misol 7. b a  18

va a2b2  170 ,


ab  ?

Maple dasturida yechish:

  • t:=solve({b+a=18, a^2+b^2=170}, {a,b});


t := {b = 7, a = 11}, {b = 11, a = 7}


    • assign(t); simplify(a*b);


77

Javob: ab  77




xy 10
x y 7

Misol 8. yz 40

tenglamalar sistemasidan x ni toping.





y z 13


zx 5
x z 8

Maple dasturida yechish:

  • S:=solve({x*y/(x+y)=10/7, y*z/(y+z)=40/13, z*x/(x+z)=5/8}, {x,y,z});






S : z 80 , y 80 , x 80
49 23 79
  • assign(S); simplify(x);



80
79



Javob:
x 80
79

Tenglamalarning sonli yechimi


Tenglamani sonli yechishda, berilgan transcendent tenglama analitik yechim bermasa, maxsus fsolve(eq,x) buyrug’idan foydalaniladi. Parametr xuddi solve dagi kabi ko`rsatiladi. Masalan:
  • x:=fsolve(cos(x)=x,x);


x:=.7390851332

§5. Tengsizliklar va tengsizliklar sistemasini yechish.




Oddiy tengsizliklarni yechish


solve buyrug’i tengsizliklarni yechishda ham qo`llaniladi.Tengsizlikning yechimi o`zgaruvchining o`zgarish oralig’i bo`lgan interval ko`rinishida beriladigan tengsizlikning yechimi yarim o`qlarda bo`lsa, u/h RealRange(–, Open(a)), ya’ni x(–, a), a – ixtiyoriy son. Open so`zi interval ochiq chegara degan ma’noni anglatadi. Agar ushbu so`z bo`lmasa, tenglamalr to`plamida bu interval yopiqligini anglatadi.Masalan:
  • s:=solve(sqrt(x+3)
  • convert(s,radical);


2

RealRangeOpen
3
21 ,


Agar siz x(a, b) ko`rinishda ko`rishni istamasangiz, berilagan o`zgaruvchini
a<x, x< b tipda bo`lsa, figurali qavslarda ko`rsatish kerak.Masalan:

> solve(1-1/2*ln(x)>2,{x});


{0  x, x e(2)}


Tengsizliklar sistemasini yechish


solve buyrug’i yordamida tengsizliklar sistemasini ham yechish mumkin.
Masalan:

> solve({x+y>=2,x-2*y<=1,x-y>=0,x-2*y>=1},{x,y});


{x  1  2 y, 1 y}
3
Misol 1. Tengsizliklar sistemasi nechta butun yechimga ega?


3 4x 5
2x  3(x 1)  1
Maple dasturida yechish:

> solve({3+4*x>=5, 2*x-3*(x-1)>-1},x);


1 x, x  4
 

2
 
Javob: Tengsizliklar sistemasi 3 ta butun yechimga ega.

Misol 2. Tengsizliklar sistemasini yeching.

Maple dasturida yechish:


x(x  1)  10  (x  1)2  3

3x  4(x  7)  16  3x

> solve({x*(x+1)+10>(x+1)^2+3, 3*x-4*(x-7)>=16- 3*x},x);


 6  x, x  6


y 5 2 y 3
Misol 3. Tengsizliklar sistemasini yeching. 4 3



4 y  1

y  4



Maple dasturida yechish:


2 3
  • solve({(y-5)/4<(2*y+3)/3, (4*y+1)/2<(y-4)/3},y);



5




27 y, y 11
10



Misol 4. Ushbu yechimlarini toping.
1296 : 314  9x  32  2976 : 96
tengsizlikning barcha natural

Maple dasturida yechish:
  • solve({1256/314<9*x-32, 9*x-32<=2976/96},x);


4  x, x  7
Javob: Tengsizlikning natural yechimlari 5,6,7
Misol 5. Tengsizliklar sistemasining eng katta butun yechimini ko’rsating
x 5  2x  0
4


2x  8

Maple dasturida yechish:
x
5
 1  2x

> solve({(x+5)/4-2*x>=0, x-(2*x-8)/5>=1-2*x},x);





7


3 x, x 5
13

Javob: Tengsizliklar sistemasining eng katta butun yechimi 0.



Yüklə 462,91 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin