Reja: Moddiy nuqta dinamikasi



Yüklə 3,33 Mb.
səhifə5/11
tarix20.11.2023
ölçüsü3,33 Mb.
#164334
1   2   3   4   5   6   7   8   9   10   11
Reja Moddiy nuqta dinamikasi-fayllar.org

Qarshilik kuchi - gaz va suyuqliklarning ilgarilanma harakatlarida hosil bo‘ladigan kuchdir.
Gaz va suyuqliklarda harakatlanuvchi har qanday jism qarshilikka uchraydi va bu ilgarilanma harakatni susaytirishga olib keladi. Bu kuch harakatlanuvchi jismning harakat tezligiga kuchli bog‘lanishda bo‘ladi:



bu yerda k1 – muhitni xarakterlovchi doimiylik (moy, suv, yopishqoq suyuqliklar). Bu kuch suyuqlik yoki gazning harakat tezligiga proportsional kuch bo‘lib, kichik tezliklar uchun o‘rinli bo‘ladi. Katta tezliklarda esa formula biroz boshqacha ko‘rinishga ega bo‘lib, kuch tezlikning kvadratiga proportsional bo‘ladi.




Arximed kuchi - gaz yoki suyuqliklar ustunlarining har xil balandliklaridagi bosimlarning farqi hisobiga itarish kuchlari hosil bo‘ladi. Idishning shakliga bog‘liq bo‘lmaydigan, suyuqlik yoki gaz ustunining birlik yuzasiga ta’sir etuvchi bosim quyidagicha ifodalanadi:

P = F/S = mg/S = ρgh
bu yerda S – suyuqlik yoki gaz ustunining yuzasi, h – ustun balandligi, ρ – suyuqlik yoki gazning zichligi.



  1. Moddiy nuqtalar tizimi. Inertsiya markazi

Shu vaqtgacha moddiy nuqta deb hisoblanishi mumkin bo‘lgan jismning harakati qarab chiqildi. Endi n ta moddiy nuqtalardan tashkil topgan tizimni (jismlar tizimini) qarab chiqaylik.


Kuchlar ta’sirida tizimdagi har bir moddiy nuqta o‘z harakatini o‘zgartiradi. Binobarin, tizimning harakatini tekshirish uchun tizimdagi har bir moddiy nuqta uchun tuzilgan harakat tenglamalari tizimini yechish kerak.
Bunday masalani yechib, moddiy nuqtalar tizimi harakatini butunligicha tekshirib hal qilish mumkin. Buning uchun, moddiy nuqtalar tizimini tavsiflovchi yangi tushunchalar kiritamiz:
Moddiy nuqtalar tizimining massasi mc ni tizimdagi moddiy nuqtalar massalarining algebrik yig‘indisiga teng deb hisoblaymiz:



Moddiy nuqtalar tizimining massa markazini – inertsiya markazi deb hisoblab, mazkur nuqtaning vaziyatini koordinata boshiga nisbatan quyidagi radius - vektor bilan ifodalash mumkin:



Tizim inertsiya markazi radius - vektorining Dekart koordinata o‘qlariga proektsiyalari quyidagilarga teng bo‘ladi:


; ; ,
Shuni ta’kidlab o‘tish kerakki, tizimning inertsiya markazi uning og‘irlik markazi bilan ustma-ust tushishi kerak;


Yüklə 3,33 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin