Сборник задач по высшей алгебре. М., Наука, 1977. Сборник задач по алгебре под редаксией. А. И. Кострикина, М., Наука, 1985


sistemaning asosiy determinanti bo’lib, bu sistemani Kramer formulalari bilan yechish mumkin. Bu holda (1) sistema birgalikda bo’lib, yagona yechimga ega bo’ladi



Yüklə 1,04 Mb.
səhifə5/14
tarix10.05.2022
ölçüsü1,04 Mb.
#57299
növüСборник задач
1   2   3   4   5   6   7   8   9   ...   14
Маъруза 35457

sistemaning asosiy determinanti bo’lib, bu sistemani Kramer formulalari bilan yechish mumkin. Bu holda (1) sistema birgalikda bo’lib, yagona yechimga ega bo’ladi.

  • sistemaning asosiy determinanti bo’lib, bu sistemani Kramer formulalari bilan yechish mumkin. Bu holda (1) sistema birgalikda bo’lib, yagona yechimga ega bo’ladi.
  •  2) . Bu holda (1) sistemaning ta tenglamasini qoldiramiz. Bu tenglamalarda dastlabki ta noma’lumni tenglikning chap tomonida qoldirib qolganlarini o’ng tomonga o’tkazamiz:
  •   (4)
  •  
  • (4) sistemadagi noma’lumlarni ozod noma’lumlar deb e’lon qilamiz va ularga ixtiyoriy qiymatlar beramiz. Natijada (4) sistemadan asosiy noma’lumlar larning mos qiymatlarini hosil qilamiz. Bu holda (1) sistema birgalikda bo’lib, u cheksiz ko’p yechimga ega bo’ladi, ya’ni aniqmas sistemadan iborat bo’ladi.
  • (4) sistemaning asosiy noma’lumlarini ozod noma’lumlar orqali ifodalangan yechimiga (1) sistemaning umumiy yechim deyiladi.
  •  Shunday qilib, agar bo’lsa, (1) sistema birgalikda (aniq yoki aniqmas), bo’lsa, (1) sistema birgalikda bo’lmaydi.
  • Teorema isbot bo’ldi.

Yüklə 1,04 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   ...   14




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin