Differensial tenglamalar sistemasini echish Quyidagi misollarda ikkita differensial tenglamalar sistemasi ikki xil usulda echilgan. YA’ni qatopga yoyish yoli bilan va Laplas almashtirishlaridan foydalanish yoli bilan. Shuni ta’kidlash lozimki, differensial tenglama qatorga yoyish yoli bilan echilganda taqribiy yechim topiladi. SHuning uchun ikki usulda topilgan echimlar farq qilmoqda.
y( x )
1
k
m
k x
e m
1 e 1 e
k
m
Fan: Kompyuter algebrasi tizimlari
O’qituvchi: T.Djiyanov
II-kurs
7-Mavzu..
sys := y( x ) 2 z( x ) y( x ) x, z( x ) y( x )
x x fens := { z( x ), y( x )}
{ z( x ) 5 e ( 2 x ) 1 e x 1 1 x, y( x ) 5 e ( 2 x ) 1 e x 1 } 12 3 4 2 6 3 2
{ y( x )
2 x 3 x2 7 x3 13 x4 9 x5 53 x6 107 x7
x8
71 61
13440 51840
x9 O( x10 ),
2 6 24 40 720 5040
z( x )
53 107 71
1 x2 1 x3 7 x4 13 x5 3 x6 x7 x8 x9 O( x10 ) }
2 24 120 80 5040 40320 120960
dsolve({sys,y(0)=0,z(0)=1},fens,laplace); { z( x ) 1 e x 5 e ( 2 x ) 1 x 1, y( x ) 5 e ( 2 x ) 1 e x 1 } 3 12 2 4 6 3 2
Maplening differensial tenglamalarni echish bo’yicha juda katta imkoniyatlari bo’lsa ham bu degan so’z har qanday differensial tenglamani analitik usulda echa oladi degani emas. Bunday hollarda conli usulda echish mumkin bo’ladi.