Differensial tenglamalarning umumiy yechimi. Maple da differensial tenglamalarning analitik yechimlarini topish uchun quyidagi komanda ishlitiladi:
dsolve(eq,var,options),
bu yerda eq – differensial tenglama, var – noaniq funkslar, options – parametrlar. Parametrlar masalaning yechilish metodini ko’rsatishi mumkin, masalan, jimlik qoidasi bo’yicha analitik yechim quyidagicha izlanadi: type=exact. Differensial tenglamani kiritishda hosilani bildirish uchun diff komanda ishlatiladi, masalan, y''+y=x differensial tenglama quyidagi ko’rinishda yoziladi: diff(y(x),x$2)+y(x)=x.
Differensial tenglamalarning umumiy yechimi soni differensial tenglamaning tartibiga bog’liq bo’lgan ixriyoriy o’zgar-maslarga bog’liqdir. Maple da bunday o’zgarmaslar qoida bo’yicha _S1, _S2, va h.k.lar bilan belgilanadi.
Bir jinsli bo’lmagan chiziqli differensial tenglamaning umumiy yechimi hamma vaqt shunday chiqariladiki, ushbu yechimning strukturasi aniq ko’rinadi. Shu bilan birga bir jinsli bo’lma-gan chiziqli differensial tenglamaning umumiy yechimi unga mos keluvchi bir jinsli differensial tenglamaning umumiy yechim-lari yig’indisiga hamda berilgan bir jinsli bo’lmagan diffe-rensial tenglamaning xususiy yechimiga
teng. Shuning uchun ham bir jinsli bo’lmagan chiziqli differensial tenglamaning yechi-mini chiqarish satri hamma vaqt ixtiyoriy o’zgarmaslarni o’z ichi-ga olgan qo’shiluvchilardan iborat (bu mos keluvchi differensial tenglamaning umumiy
Fan: Kompyuter algebrasi tizimlari O’qituvchi: T.Djiyanov II-kurs 7-Mavzu..
yechimi) va ixtiyoriy o’zgarmaslarsiz bo’lgan yig’indidan iborat (bu bir turli bo’lmagan differensial teng-lamaning xususiy yechimi) bo’lishi mumkin.
dsolve komanda differensial tenglamaning yechimini hi-soblanmaydigan shaklda beradi. Hosil bo’lgan yechim ustidan ke-yinchalik ishlash uchun (masalan, yechim grafigini yasash) hosil bo’lgan yechimning o’ng tomonini rhs(%)komanda bilan ajratish kerak.
y'+ycosx=sinxcosx differensial tenglamaning umumiy yechimini topish.