Mavjudlik va yagonalik teoremalari.
Hosilaga nisbatan yechilgan
oddiy differensial tenglama berilgan bo‘lsin, bu yerda f (x, y) funksiya x0y tekislikdagi G sohada aniqlangan bo‘lsin.
Qaralayotgan sohada tenglama yechimga egami yoki yo‘qmi va agar yechim mavjud bo‘lsa, yagonami ya’ni (2.1.1) differensial tenglama
y(x0)=y0
shartni qanoatlantiradimi degan savollarga javob berish kerak bo‘ladi.
Yuqoridagi savollarga javob beradigan teoremalar mavjudlik va yagonalik teoremalari deb yuritiladi.
2.1.2 -teorema (mavjudlik teoremasi). Agar bo‘lsa, u holda G sohaning ixtiyoriy nuqtasi uchun (2.1.1) tenglamaning (2.1.3) shartni qanoatlantiradigan kamida bitta yechimi mavjud.
G sohaga tegishli bo‘lgan yopiq R turtburchak
ni qaraymiz, . Bu to‘rtburchakda f (x, y) funksiya chegaralangan, ya’ni
R dagi barcha nuqtalar uchun M > 0, chunki yopiq sohada uzluksiz funksiya o‘zining eng katta va eng kichik qiymatini qabul qiladi.
belgilanish kiritamiz,
Peano kesmasi deyiladi.
2.1.5-ta’rif. Agar f(x,y) funksiya G sohada aniqlangan bo‘lib, shu funksiya uchun shunday L0 son mavjud bo‘lsaki, ixtiyoriy ikkita (x,y1)G, (x,y2) G nuqtalar uchun ushbu
(L)
tengsizlik bajarilsa, u holda f(x,y) funksiya G sohada y bo‘yicha Lipshis shartini qanoatlantiradi deyiladi, L esa Lipshis o‘zgarmasi deyiladi.
Dostları ilə paylaş: |