Standart funksiyalar.
Maple da standart funksiyalarning ayrimlarini ro’yxatini keltiramiz:
N
|
funksiya
|
Maple da
|
N
|
Funksiya
|
Maple da
|
1
|
|
exp(x)
|
12
|
Cosecx
|
cosec(x)
|
2
|
lnx
|
ln(x)
|
13
|
Arcsinx
|
arcsin(x)
|
3
|
lgx
|
lg10(x)
|
14
|
Arccosx
|
arcos(x)
|
4
|
|
log[a](x)
|
15
|
Arctgx
|
arctg(x)
|
5
|
|
sqrt(x)
|
16
|
Arcctgx
|
arcctg(x)
|
6
|
|
abs(x)
|
17
|
Shx
|
sh(x)
|
7
|
sinx
|
sin(x)
|
18
|
Chx
|
ch(x)
|
8
|
cosx
|
cos(x)
|
19
|
Thx
|
th(x)
|
9
|
tgx
|
tg(x)
|
20
|
Cthx
|
cth(x)
|
10
|
ctgx
|
ctg(x)
|
21
|
-Dirak funksiyasi
|
Dirac(x)
|
11
|
secx
|
sec(x)
|
22
|
-Xevisayd funksiyasi
|
Heaviside(x)
|
Maple ga juda katta miqdorda maxsus funksiyalar ham kiritilgan. Ular Bessel, Eylerning beta-, gamma-funksiyalari, xatoliklar integrali, elliptik integrallar, har xil ortogonal ko’phadlar va hokazo. Eyler soni ye=2.718281828…. exp(x) orqali quyidagicha hisoblanadi: exp(1).
Matematik ifodalarni shaklini almashtirish. Testlar yechish.
Ayrim ko’p uchraydigan buyruqlar va ularga doir misollar keltiramiz.
|
Buyruq
|
Ma’nosi
|
Parametrlaning ma’nosi
|
1
|
expand(eq)
|
Qavslarni ochib yoyish
|
yeq-ifoda
|
2
|
fastor(eq)
|
Ko’phadni ko’paytuvchilarga ajratish
|
|
3
|
normal(eq)
|
Kasrni normal ko’rinishga keltirish
|
|
4
|
collect(eq, var)
|
O’xshash hadlarni ixchamlash
|
var-o’zgaruvchi
|
5
|
simplify(eq {,option})
|
Ifodalarni soddalashtirish
|
option-parametr
|
6
|
combine(eq, param)
|
Darajalarni birlashtirish yoki trigonometrik ifodalarni darajalarini pasaytirish
|
param=trig,
param=power,
|
7
|
radnormal(eq)
|
Ildiz, darajali ifodalarni soddalashtirish
|
|
8
|
convert(eq,param)
|
Ifoda param tipli ifodaga almashtiriladi
|
param- tip parametr
param=sincos, param=tan,
param=vector, param=string,
param=termin
|
9
|
subs(g(x)=t, f)
|
f(x) da g(x)=t deb o’zgaruvchini almashtirish
|
|
Sonlar ustida ba’zi bir amallar.
Maple da sonlardan yangi sonlar hosil qiladigan amallar mavjud.
Haqiqiy sonlar ustida quyidagi amallar mavjud:
frac(expr)- expr ifodaning kasr qismini hisoblash,
trunc(expr)- expr ifodaning butun qismini hisoblash,
round(expr)- expr ifodani yaxlitlash.
Kompleks sonlar z=x+iy ustida quyidagi amallar mavjud:
Re(z)- z –sonining haqiqiy qismini hisoblash,
Im(z)-z- sonining mavhum qismini hisoblash,
conjugate(z)-z – sonining qo’shmasi hisoblash,
polar(z)-z – sonining trigonometrik ko’rinishini hisoblash
evalc(Re(z)), evalc(Im(z)), -z – sonning haqiqiy va mavhum qismini hisoblash.
Mapleda funksiyalarni aniqlash.
Funksiyalar Maple da 4 xil usulda beriladi:1) := qiymat berish operatori yordamida;2) f:=(x1,x2,…) - >f(x1,x2,…) funksional operator yordamida;
3)unapply(expr,x1,x2,…) buyrug`i yordamida; 4)piecewise(s1,f1,s2,f2,…) buyrug`i yordamida.
Misollar.1.
>f:=sin(x)+cos(x); \\ f:=sin(x)+cos(x)
>x:=π; \\
>f; \\
Maple da barcha hisoblashlar simvollli ko’rinishda olib boriladi, ya’ni natijada ildizlar, irrasional konstantalar va hokazolar ishtirok etadi. Natijani o’nli ko’rinishda olish uchun evalf(f, ε) buyrug`i
ishlatiladi, bu yerda f-qiymati hisoblanayotgan ifoda, ε-aniqlik.
Misollar.2. ifodani x=2, t=1 dagi qiymati quyidagicha hisoblanadi:
>f:=x*exp(-t):
>evalf(f,0.0000000001); \\0.735788824
Misol 3. >f:=(x,y)->sin(x+y); \\f:=sin(x+y)
>f(π/2,0); \\1
Misol 3. >f:=unapply(x^2+y^2,x,y); \\
>f(7,5); \\74
Misol 4. Maple da
kabi funksiyalar quyidagi buyruq orqali beriladi:
>piecewise(xan,f2);
Masalan,
funksiya quyidagicha beriladi:
>f:=piecewise(x<0,0,0<=x and x<1,x, x>=1, sin(x);
9-mavzu. Maple tizimida matematik analiz masalalarini yechish
Maple da limit, hosila, integral va yana ba’zi amallarni bajarish uchun ikki xil komanda mavjud: birida komanda darhol bajariladi va ekranga natija chiqariladi, ikkinchisida esa amal bajarilmaydi va ekranga komandaning o’zi chiqariladi, bu Maple yordamida o’quvchiga o’qishi uchun qulay hujjat yaratish imkoniyatini beradi va uni bajarilishi kechiktirilgan komanda yoki inert komanda deyiladi. Ikkala komanda bir xil yoziladi, faqatgina inert komanda bosh harf bilan yoziladi.
Amal nomi
|
Darhol
bajariladigan
komanda
|
Bajarilishi
kechiktirilgan
komanda
|
Matematik
ma’nosi
|
limit
|
limit(f(x), x=a, par)
|
Limit(f(x), x=a, par)
|
|
hosila
|
diff(f(x),x)
|
Diff(f(x),x)
|
|
integral
|
int(f(x), x)
|
Int(f(x), x)
|
|
aniq
integral
|
int(f(x), x=a..b)
|
Int(f(x), x=a..b)
|
|
Limitlarni hisoblash
limit(f(x), x=a, par) komanlasida tabiiy ravishda quyidagi parametrlar mavjud: left-chap limit, right-o’ng limit, real- o’zgaruvchi haqiqiy, complex-o’zgaruvchi kompleks.
Misolllar.
1. > Limit(sin(2*x)/x,x=0); \\
> limit(sin(2*x)/x,x=0); \\2
>Limit(sin(2*x)/x,x=0)= limit(sin(2*x)/x,x=0); \\ .
Oxirgi yozuvning qulayligi ko’rinib turibdi.
> Limit(x*(Pi/2+arctan(x)),x=-infinity)= limit(x*(Pi/2+arctan(x)), x=-infinity); \\ .
3. > Limit(1/(1+exp(1/x)),x=0,left)= limit(1/(1+exp(1/x)),x=0,left);
\\
>Limit(1/(1+exp(1/x)),x=0,right)= limit(1/(1+exp(1/x)), x=0,right);
\\
Hosilani hisoblash
Misollar.
> Diff(sin(x^2),x)=diff(sin(x^2),x); \\
> Diff(cos(2*x)^2,x$4)=diff(cos(2*x)^2,x$4);
\\
>simplify(%); \\
> combine(%); \\
Differensial operator D(f)
Maple da differensial opeator ham mavjud: D(f), bu yerda f- argumenti ko’rsatilmagan funksiya. Masalan,
>D(sin); \\cos
>D(sin) (Pi): eval(%); \\-1
>f:=x->ln(x^2)+exp(3*x):
>D(f); \\
Integrallash
Misollar.1.
>Int((1+cos(x))^2, x=0..Pi)= int((1+cos(x))^2, x=0..Pi); \\
int(f, x, continuous)-komanda integrallash sohasidagi uzilish nuqtalarini hisobga olmaydi.
Agar x=0..+infinity bo’lsa xosmas integrallar hisoblanadi.
Integralni sonli hisoblash uchun evalf(int(f, x=x1..x2), e) – e-aniqlik, komanda ishlatiladi.
2. .
> Int(exp(-a*x),x=0..+infinity)= int(exp(-a*x),x=0..+infinity);
Definite integration: Can't determine if the integral is convergent. Need to know the sign of --> a .Will now try indefinite integration and then take limits.
> assume(a>0);
> Int(exp(-a*x),x=0..+infinity)=int(exp(-a*x),x=0..+infinity); \\
Dostları ilə paylaş: |