|
Ixtiyoriy natural son bo’lsa, unda mavhum birlik
|
səhifə | 1/11 | tarix | 04.02.2020 | ölçüsü | 342,17 Kb. | | #30384 |
| 2 5256099071818466792
Agar n-ixtiyoriy natural son bo’lsa, unda mavhum birlik i uchun qaysi tenglik o’rinli ?
|
i2n=(−1)n .
|
i2n=i .
|
i2n=−1 .
|
i2n=−i .
|
i2n=1 .
|
Ta’rifni to’ldiring: z=x+iy ko’rinishdagi ifoda kompleks son deb ataladi. Bunda i−mavhum birlik (i2=−1 ) va x,y − ∙∙∙ sonlarni ifodalaydi.
|
haqiqiy .
|
irratsional .
|
ratsional .
|
natural .
|
butun .
|
z =x+iy kompleks son uchun Rez qanday aniqlanadi?
|
Rez=x .
|
Rez=x+y .
|
Rez=
|
Rez=y .
|
to’g’ri javob keltirilmagan .
|
z =−3+4i kompleks son uchun Imz nimaga teng?
|
4
|
1
|
5
|
-4
|
3
|
kompleks sonning moduli qanday aniqlanadi?
|
.
|
.
|
.
|
.
|
.
|
z =3−4i kompleks sonning moduli z nimaga teng?
|
5
|
25
|
7
|
1
|
-1
|
O’zaro qo’shma kompleks sonlar uchun quyidagi tengliklardan qaysi biri o’rinli emas ?
|
|
|
.
|
.
|
|
z1=2a−4i va z2=6+b2i kompleks sonlar a va b parametrlarning qaysi qiymatida teng bo’ladi?
|
to’g’ri javob keltirilmagan .
|
keltirilgan barcha hollarda .
|
a =3, b=2 .
|
a =3, b=−2 .
|
a =3, b=±2
|
z1=x1+iy1 va z2=x2+iy2 kompleks sonlarni qo’shish amalining ta’rifi qayerda to’g’ri ifodalangan?
|
z1+z2=(x1+x1)+i(y1+y2) .
|
z1+z2=(y1+y2)+i(x1+x2) .
|
z1+z2=(x2+y1)+i(x1+y2) .
|
z1+z2=(x1+y2)+i(x2+y1) .
|
z1+z2=(x1+y1)+i(x2+y2) .
|
z1=5+3i va z2=−1+2i kompleks sonlarning z1+z2 yig’indisini toping.
|
4+5i .
|
8+i .
|
7+2i .
|
2+7i .
|
5+4i .
|
Kompleks sonlarni qo’shish amali uchun quyidagi tengliklardan qaysi biri o’rinli bo’lmaydi ?
|
.
|
z+0=z .
|
z1+z2= z2+z1 .
|
z1+(z2 +z3)=( z1+z2 )+z3 .
|
z+z=2z .
|
z1=x1+iy1 va z2=x2+iy2 kompleks sonlarni ayirish amalining ta’rifi qayerda to’g’ri ifodalangan?
|
z1−z2=(x1−x1)+i(y1−y2) .
|
z1−z2=(y1−y2)+i(x1−x2) .
|
z1−z2=(x2−y1)+i(x1−y2) .
|
z1−z2=(x1−y1)+i(x2−y2) .
|
z1−z2=(x1−y2)+i(x2−y1) .
|
z1=5+3i va z2=−1+2i kompleks sonlarning z1∙z2 ko’paytmasini toping.
|
−11+7i .
|
8+5i.
|
15−2i .
|
10−3i .
|
−5+6i .
|
z1=3(cos450+isin450) , z2=4(cos300+isin300) kompleks sonlarning z=z1∙z2 ko’paytmasini toping.
|
z=12(cos750+isin750) .
|
z=5(cos150+isin150) .
|
z=5(cos750+isin750) .
|
z=12(cos150+isin150) .
|
z=7(cos750+isin150) .
|
z0=2(cos150+isin150) kompleks son bo’yicha z=(z0)5 kompleks sonni toping.
|
z=32(cos750+isin750)
|
z=10(cos750+isin750)
|
z=10(cos200+isin200)
|
z=7(cos750+isin750)
|
z=32(cos200+isin200) .
|
Muavr formulasining davomini ko’rsating: (cosφ+isinφ)n= ....... .
|
cosnφ+isinnφ .
|
cos(φ+n)+isin(φ+n) .
|
cosnφ−isinnφ .
|
cosnφ+isinnφ .
|
cosnφ−isinnφ .
|
z4=−1 ikki hadli tenglama nechta ildizga ega ?
|
ildizga ega emas .
|
4
|
3
|
2
|
1
|
w=f(z) (z=x+iy) funksiya uchun Ref(z)=x2−y2 , Imf(z)=−2xy bo’lsa, w=f(z) funksiyani toping .
|
.
|
.
|
w=z2 .
|
.
|
.
|
Kompleks funksiyalarni differensiallash qoidasi qayerda noto’g’ri ifodalangan ?
|
.
|
[Cf(z)]'=Cf '(z) (C – const.) .
|
[f(z)g(z)]'=f '(z)g(z)+ f (z)g'(z) .
|
[f(z)−g(z)]'=f '(z) −g'(z) .
|
[f(z)+g(z)]'=f '(z)+g'(z) .
|
Quyidagi shartlardan qaysi biri f(t) original uchun talab etilmaydi?
|
f(t) monoton funksiya .
|
t<0 bo’lganda f(t)≡0 .
|
ixtiyoriy [a,b] chekli kesmada f(t) funksiya bo’lakli-uzluksiz .
|
biror musbat M va s o’zgarmas sonlar uchun |f(t)|<Mest .
|
keltirilgan barcha shartlar talab etiladi .
|
Agar original |f(t)|<Mest shartni qanoatlantirsa, uning tasviri F(p) o’zgaruvchining qanday qiymatlarida aniqlangan bo’ladi?
|
Rep>s .
|
Rep<s .
|
Imp>s .
|
Imp<s .
|
|p|>s .
|
Agar L{f}=L{g} bo’lsa, quyidagi tasdiqlardn qaysi biri noto’g’ri ?
|
keltirilgan barcha tasdiqlar to’g’ri .
|
|f(t)|≡ |g(t)| .
|
Imf(t)≡Img(t) .
|
Ref(t)≡Reg(t) .
|
f(t)≡g(t) .
|
σ0(t) Hevisayd funksiyasining tasviri nimaga teng?
|
1/p .
|
1/(p2+1) .
|
1/(p2−1) .
|
1/(p+1) .
|
1/(p−1) .
|
f(t)=sint (t≥0) trigonometrik funksiyaning tasviri nimaga teng?
|
1/(p2+1) .
|
1/p .
|
1/(p2−1) .
|
1/(p+1) .
|
1/(p−1) .
|
f(t)=cost (t≥0) trigonometrik funksiyaning tasviri nimaga teng?
|
p/(p2+1) .
|
1/p .
|
p/(p2−1) .
|
p/(p+1) .
|
p/(p−1) .
|
f(t)=e−t (t≥0) ko’rsatgichli funksiyaning tasviri nimaga teng?
|
1/(p+1) .
|
1/(p−1) .
|
1/(p2−1) .
|
1/(p2+1) .
|
1/p .
|
f(t)=eαt (t≥0) ko’rsatgichli funksiyaning tasviri nimaga teng?
|
1/(p−α) .
|
1/(p+α) .
|
1/(p2−α2) .
|
1/(p2+α2) .
|
α/p .
|
Quyidagi tengliklarning qaysi biri Laplas almashtirishining chiziqlilik xossasini ifodalaydi ?
|
L{f±g}=L{f}±L{g} .
|
L{1/f}=1/L{f} .
|
L{f∙g}=L{f}∙L{g} .
|
L{f2}= L2{f} .
|
L{f/g}=L{f}/ L{g} .
|
f(t)=2et+3e−t (t≥0) funksiyaning tasvirini toping
|
(5p−1)/(p2−1) .
|
5/(p+1) .
|
5/(p−1) .
|
5/(p+1)2 .
|
(5p+1)/(p2+1) .
|
Laplas almashtirishi uchun o’xshashlik xossasini ko’rsating
|
.
|
.
|
.
|
.
|
.
|
Agar f(t) originalning tasviri F(p)=4p/(p+1) bo’lsa, f(2t) original tasviri nimaga teng bo’ladi?
|
2p/(p+2) .
|
p/(2p+1) .
|
8p/(p+2) .
|
8p/(p+1) .
|
2p/(p+1) .
|
Laplas almashtirishi uchun siljish xossasini ko’rsating
|
.
|
.
|
.
|
.
|
.
|
Agar f(t) originalning tasviri F(p)=p/(p+1) bo’lsa, etf(t) original tasviri nimaga teng bo’ladi?
|
(p−1)/p .
|
p/(p−1) .
|
p/(p+1) .
|
(p+1)/(p−1) .
|
(p−1)/(p+1) .
|
Agar f(t) originalning tasviri F(p)=p/(p+1) bo’lsa, f(t+2) original tasviri nimaga teng bo’ladi?
|
e2pp/(p+1) .
|
e2−pp/(p−1) .
|
e−2pp/(p+1) .
|
ep−2 p/(p+1) .
|
e2+pp/(p+1) .
|
Originalni differensiallash xossasi qayerda to’g’ri ko’rsatilgan ?
|
.
|
.
|
.
|
.
|
.
|
Agar f(t) originalning tasviri F(p) va f(0)=a bo’lsa, f ′(t) hosilaning tasviri G(p) qanday topiladi?
|
G(p)=pF(p)+a .
|
G(p)=apF(p) .
|
G(p)=pF(p)−a .
|
G(p)=F(p)−ap .
|
G(p)=F(p)+ap .
|
Agar f(t) originalning tasviri F(p)=(p2−1)/(p3+p) va f(0)=−1 bo’lsa, f ′(t) hosilaning tasviri G(p) nimaga teng?
|
G(p)= −2/(p2+1) .
|
G(p)= −2+1/(p2+1) .
|
G(p)=(p −2)/(p2+1) .
|
G(p)= −2+p/(p2+1) .
|
G(p)=−2p/(p2+1) .
|
Agar f(t) originalning tasviri F(p)=cos2p bo’lsa, tf(t) originalning tasviri nimaga teng bo’ladi?
|
2sin2p .
|
(sin2p)/2.
|
cos2p2 .
|
(cos2p)/p .
|
pcos2p .
|
Agar f(t)=(t−1)/(t2+1) originalning tasviri F(p) bo’lsa, F′(p) tasvirga mos keladigan g(t) originalni toping
|
g(t)=(t−t2)/(t2+1) .
|
g(t)=(t−1)/(t3+t)
|
g(t)=(t2−t)/(t2+1) .
|
g(t)=(t2+t)/(t2+1) .
|
to’g’ri javob keltirilmagan .
|
Tasvirlar jadvalidan olingan quyidagi tengliklardan qaysi biri noto’g’ri ifodalangan ?
|
L{tsinαt}=2p2 α2/(p2+a2) .
|
L{tcosαt}=(p2−α2)/(p2+α2) .
|
L{tn}=n!/pn+1 .
|
L{tne−at}=n!/(p+a)n+1 .
|
keltirilgan barcha tengliklar to’g’ri ifodalangan .
|
f(t)=cos2t originalning tasvirini toping
|
.
|
.
|
.
|
.
|
.
|
Agar L{f(t)}=p3/ (1+p)2 va f(0)=0 bo’lsa, L{f '(t)} nimaga teng bo’ladi?
|
p4/ (1+p)2 .
|
p2/ (1+p)2 .
|
p3/ (1+p)3 .
|
p4/ (1+p)3 .
|
to’g’ri javob keltirilmagan .
|
Differensial tenglama ta’rifini ko‘rsating
|
noma’lum funksiyaning hosilalari qatnashgan tenglama
|
noma’lum funksiyaning turli qiymatlari qatnashgan tenglama
|
noma’lum funksiya qatnashgan tenglama .
|
noma’lum funksiya va uning hosilalarining x0 nuqtadagi qiymatlari qatnashgan tenglama
|
noma’lum funksiya va uning integrallari qatnashgan tenglama
|
Quyidagilardan qaysi biri differensial tenglama bo‘ladi ?
|
y–2xy′+5=0 .
|
y2+5y–3cosx=0 .
|
3x2+4xy–1=0 .
|
.
|
y(x)+2 y′(x0)–x=0 .
|
(α2−1)y′′+αy′+5xy+7=0 tenglama α parametrning qanday qiymatlarida differensial tenglama bo’ladi?
|
α(−∞, ∞) .
|
α≠±1 .
|
α≠−1 .
|
α≠1 .
|
α≠0 .
| 0>
Dostları ilə paylaş: |
|
|