|
|
səhifə | 2/11 | tarix | 04.02.2020 | ölçüsü | 342,17 Kb. | | #30384 |
| 2 5256099071818466792
Ta’rifni to‘ldiring: Differensial tenglamaning tartibi deb unda qatnshuvchi noma’lum funksiya hosilalarning ……… aytiladi
|
eng katta tartibiga
|
eng katta darajasiga
|
eng katta qiymatiga
|
Soniga
|
to‘g‘ri javob keltirilmagan
|
(y′)3–(y′)2+ y′′–y+5y4+x5=0 differensial tenglama nechanchi tartibli ?
|
II .
|
I .
|
III .
|
IV .
|
V .
|
Differensial tenglamaning yechimi yana nima deb ataladi ?
|
integral .
|
tenglashtiruvchi funksiya .
|
boshlang’ich funksiya .
|
differensial .
|
ildiz .
|
Quyidagi funksiyalardan qaysi biri y′−2y=0 differensial tenglamaning yechimi bo’ladi?
|
y=e2x .
|
y=ln2x .
|
y=cos2x .
|
y=sin2x .
|
y=x2 .
|
n-tartibli F(x, y, y′, ..., y(n−1), y(n))=0 differensial tenglama uchun boshlang‘ich shartlar qanday ko‘rinishda bo‘ladi
|
.
|
.
|
.
|
.
|
.
|
I tartibli differensial tenglama eng umumiy holda qanday ko‘rinishda bo‘ladi ?
|
F(x,y,y′)=0 .
|
F(x,y)= y′ .
|
F(x, y′)= y .
|
F(x,y,y′, y′′)=0 .
|
F(y,y′)= x .
|
I tartibli differensial tenglama uchun Koshi masalasini ko‘rsating
|
y′=f(x,y) , y(x0)= y0 .
|
y′=f(x,y) , y′(x0)= y0 .
|
y′=f(x0,y) .
|
y′=f(x,y0) .
|
y′=f(x0,y0) .
|
I tartibli o‘zgaruvchilari ajralgan differensial tenglamani ko‘rsating
|
M(x)dx+N(y)dy=0 .
|
M1(x) N1(y)dx+ M2(x)N2(y)dy=0 .
|
y′+P(x)y=Q(x) .
|
y′=f(x/y) .
|
y′=f(xy) .
|
O‘zgaruvchilari ajralgan differensial tenglamaning umumiy integralini toping.
|
.
|
.
|
.
|
.
|
.
|
I tartibli o‘zgaruvchilari ajraladigan differensial tenglamani ko‘rsating
|
M1(x) N1(y)dx+ M2(x)N2(y)dy=0 .
|
M(x)dx+N(y)dy=0 .
|
y′=f(xy) .
|
y′=f(x/y) .
|
y′+P(x)y=Q(x) .
|
O‘zgaruvchilari ajraladigan differensial tenglamaning umumiy yechimini toping
|
.
|
.
|
.
|
.
|
.
|
I tartibli bir jinsli differensial tenglamani ko‘rsating .
|
y′=f(x/y) .
|
y′=f(xy) .
|
y′+P(x)y=Q(x) .
|
M1(x) N1(y)dx+ M2(x)N2(y)dy=0 .
|
M(x)dx+N(y)dy=0 .
|
I tartibli bir jinsli differensial tenglamani qanday almashtirma yordamida integrallanadi
|
y=ux .
|
y=x/u .
|
y=u–x .
|
y=u+x .
|
y=u/x .
|
I tartibli chiziqli differensial tenglamani integrallang
|
.
|
.
|
.
|
.
|
.
|
Bernulli tenglamasi qaysi javobda to’g’ri ifodalangan?
|
y′+P(x)y =Q(x)yn (n≠0, n≠1 ) .
|
y′+P(x)/yn=Q(x) (n≠0, n≠1 ) .
|
y′+P(x)yn=Q(x) (n≠0, n≠1 ) .
|
y′+P(x)y =Q(x)/yn (n≠0, n≠1 ) .
|
yn y′+P(x)y=Q(x) (n≠0, n≠1 ) .
|
y′+P(x)y =Q(x)yn (n≠0, n≠1 ) Bernulli tenglamasi qanday almashtirma yordamida chiziqli tenglamaga keltiriladi
|
z=y1−n .
|
z=yn+1
|
z=yn−1 .
|
zn=y .
|
z=yn .
|
y′+xy =x3y3 Bernulli tenglamasining umumiy yechimini topish uchun qanday almashtirma bajariladi
|
z=y−2 .
|
z=y−3 .
|
z=y2 .
|
z3=y .
|
z=y3 .
|
Qaysi shartda M(x,y)dx+N(x,y)dy=0 to‘liq differensialli tenglama bo‘ladi
|
.
|
.
|
.
|
.
|
.
|
Quyidagilardan qaysi biri to‘liq differensialli tenglama bo‘ladi
|
.
|
.
|
.
|
.
|
.
|
tenglama α parametrning qanday qiymatida to’liq differensialli tenglama bo’ladi?
|
α=1 .
|
α=0 .
|
α=−1 .
|
α=±1 .
|
α≠±1 .
|
II tartibli differensial tenglamaning umumiy ko‘rinishi qayerda to‘g‘ri
ko‘rsatilgan
|
F(x, y, y′, y′′)=0 .
|
F(x0, y0, y′, y′′)=0 .
|
F( y, y′, y′′)=0 .
|
F(x, y, y′′)=0 .
|
F(x, y′′)=0 .
|
II tartibli hosilaga nisbatan yechilgan differensial tenglamaning umumiy ko‘rinishi qayerda to‘g‘ri ko‘rsatilgan
|
y′′= f(x, y, y′) .
|
y′′= f(x0 , y0, y′) .
|
y′′= f(y, y′) .
|
y′′= f( y, y′, y′′) .
|
y′′= f(x, y, y′, y′′) .
|
II tartibli differensial tenglama uchun Koshi masalasi qayerda to‘g‘ti ifodalangan
|
.
|
.
|
.
|
.
|
.
|
Quyidagi II tartibli differensial tenglamalardan qaysi birini tartibni pasaytirish usulida integrallab bo‘lmaydi
|
y′′= xy .
|
y′′= xy′ .
|
y′′= yy′ .
|
y′′= x .
|
barcha tenglamalarni tartibni pasaytirish usulida integrallab bo‘ladi .
|
y′′=sin2x differensial tenglamaning umumiy yechimini toping
|
y= – 0.25sin2x+ C1x+ C2 .
|
y= – 0.25cos2x+C .
|
y= – 0.25sin2x+C .
|
y= – 0.25cos2x+C1x+ C2 .
|
to‘g‘ri javob keltirilmagan .
|
y′′=f(x,y′) ko‘rinishdagi differensial tenglamani tartibni pasaytirish usulida integrallash uchun qanday almashtirmadan foydalaniladi ?
|
y′= p(x) .
|
y′′= p(x) .
|
y=p(x) .
|
y′= p(y) .
|
y′′= p(y) .
|
y′′=y′/x tenglamaning umumiy yechimini tartibni pasaytirish usulida toping
|
y=C1+C2x2 .
|
y=(C1+C2 x)/x2 .
|
y=C1+C2x .
|
y=C1+C2/x .
|
y=C1+C2/x2 .
|
y′′=f(y,y′) ko‘rinishdagi differensial tenglamani tartibni pasaytirish usulida integrallash uchun qanday almashtirmadan foydalaniladi
|
y′=p(y) .
|
y′′=p(y) .
|
y′′= p(x) .
|
y′= p(x) .
|
y=p(x) .
|
Dostları ilə paylaş: |
|
|