Ixtiyoriy natural son bo’lsa, unda mavhum birlik



Yüklə 342,17 Kb.
səhifə2/11
tarix04.02.2020
ölçüsü342,17 Kb.
#30384
1   2   3   4   5   6   7   8   9   10   11
2 5256099071818466792




Ta’rifni to‘ldiring: Differensial tenglamaning tartibi deb unda qatnshuvchi noma’lum funksiya hosilalarning ……… aytiladi

eng katta tartibiga

eng katta darajasiga

eng katta qiymatiga

Soniga

to‘g‘ri javob keltirilmagan




(y′)3–(y′)2+ y′′–y+5y4+x5=0 differensial tenglama nechanchi tartibli ?

II .

I .

III .

IV .

V .



Differensial tenglamaning yechimi yana nima deb ataladi ?

integral .

tenglashtiruvchi funksiya .

boshlang’ich funksiya .

differensial .

ildiz .




Quyidagi funksiyalardan qaysi biri y′−2y=0 differensial tenglamaning yechimi bo’ladi?

y=e2x .

y=ln2x .

y=cos2x .

y=sin2x .

y=x2 .



n-tartibli F(x, y, y′, ..., y(n−1), y(n))=0 differensial tenglama uchun boshlang‘ich shartlar qanday ko‘rinishda bo‘ladi

.

.

.

.

.



I tartibli differensial tenglama eng umumiy holda qanday ko‘rinishda bo‘ladi ?

F(x,y,y′)=0 .

F(x,y)= y′ .

F(x, y′)= y .

F(x,y,y′, y′′)=0 .

F(y,y′)= x .



I tartibli differensial tenglama uchun boshlang‘ich shart qanday ko‘inishda

bo‘ladi ?



y(x0)= y0 .

y′(x0)= y0 .

.

.

.



I tartibli differensial tenglama uchun Koshi masalasini ko‘rsating

y′=f(x,y) , y(x0)= y0 .

y′=f(x,y) , y′(x0)= y0 .

y′=f(x0,y) .

y′=f(x,y0) .

y′=f(x0,y0) .



I tartibli o‘zgaruvchilari ajralgan differensial tenglamani ko‘rsating

M(x)dx+N(y)dy=0 .

M1(x) N1(y)dx+ M2(x)N2(y)dy=0 .

y′+P(x)y=Q(x) .

y′=f(x/y) .

y′=f(xy) .



O‘zgaruvchilari ajralgan differensial tenglamaning umumiy integralini toping.

.

.

.

.

.



I tartibli o‘zgaruvchilari ajraladigan differensial tenglamani ko‘rsating

M1(x) N1(y)dx+ M2(x)N2(y)dy=0 .

M(x)dx+N(y)dy=0 .

y′=f(xy) .

y′=f(x/y) .

y′+P(x)y=Q(x) .



O‘zgaruvchilari ajraladigan differensial tenglamaning umumiy yechimini toping

.

.

.

.

.



I tartibli bir jinsli differensial tenglamani ko‘rsating .

y′=f(x/y) .

y′=f(xy) .

y′+P(x)y=Q(x) .

M1(x) N1(y)dx+ M2(x)N2(y)dy=0 .

M(x)dx+N(y)dy=0 .



I tartibli bir jinsli differensial tenglamani qanday almashtirma yordamida integrallanadi

y=ux .

y=x/u .

y=ux .

y=u+x .

y=u/x .



I tartibli chiziqli differensial tenglamani integrallang

.

.

.

.

.



Bernulli tenglamasi qaysi javobda to’g’ri ifodalangan?

y′+P(x)y =Q(x)yn (n≠0, n≠1 ) .

y′+P(x)/yn=Q(x) (n≠0, n≠1 ) .

y′+P(x)yn=Q(x) (n≠0, n≠1 ) .

y′+P(x)y =Q(x)/yn (n≠0, n≠1 ) .

yn y′+P(x)y=Q(x) (n≠0, n≠1 ) .



y′+P(x)y =Q(x)yn (n≠0, n≠1 ) Bernulli tenglamasi qanday almashtirma yordamida chiziqli tenglamaga keltiriladi

z=y1−n .

z=yn+1

z=yn−1 .

zn=y .

z=yn .



y′+xy =x3y3 Bernulli tenglamasining umumiy yechimini topish uchun qanday almashtirma bajariladi

z=y2 .

z=y3 .

z=y2 .

z3=y .

z=y3 .



Qaysi shartda M(x,y)dx+N(x,y)dy=0 to‘liq differensialli tenglama bo‘ladi

.

.

.

.

.



Quyidagilardan qaysi biri to‘liq differensialli tenglama bo‘ladi

.

.

.

.

.



tenglama α parametrning qanday qiymatida to’liq differensialli tenglama bo’ladi?

α=1 .

α=0 .

α=−1 .

α=±1 .

α≠±1 .



  1. II tartibli differensial tenglamaning umumiy ko‘rinishi qayerda to‘g‘ri

ko‘rsatilgan

F(x, y, y′, y′′)=0 .

F(x0, y0, y′, y′′)=0 .

F( y, y′, y′′)=0 .

F(x, y, y′′)=0 .

F(x, y′′)=0 .



II tartibli hosilaga nisbatan yechilgan differensial tenglamaning umumiy ko‘rinishi qayerda to‘g‘ri ko‘rsatilgan

y′′= f(x, y, y′) .

y′′= f(x0 , y0, y′) .

y′′= f(y, y′) .

y′′= f( y, y′, y′′) .

y′′= f(x, y, y′, y′′) .



II tartibli differensial tenglama uchun Koshi masalasi qayerda to‘g‘ti ifodalangan

.

.

.

.

.



Quyidagi II tartibli differensial tenglamalardan qaysi birini tartibni pasaytirish usulida integrallab bo‘lmaydi

y′′= xy .

y′′= xy′ .

y′′= yy′ .

y′′= x .

barcha tenglamalarni tartibni pasaytirish usulida integrallab bo‘ladi .



y′′=sin2x differensial tenglamaning umumiy yechimini toping

y= – 0.25sin2x+ C1x+ C2 .

y= – 0.25cos2x+C .

y= – 0.25sin2x+C .

y= – 0.25cos2x+C1x+ C2 .

to‘g‘ri javob keltirilmagan .



y′′=f(x,y′) ko‘rinishdagi differensial tenglamani tartibni pasaytirish usulida integrallash uchun qanday almashtirmadan foydalaniladi ?

y= p(x) .

y′′= p(x) .

y=p(x) .

y= p(y) .

y′′= p(y) .



y′′=y′ tenglamaning umumiy yechimini tartibni pasaytirish usulida toping

.

.

.

.

.




y′′=y′/x tenglamaning umumiy yechimini tartibni pasaytirish usulida toping

y=C1+C2x2 .

y=(C1+C2 x)/x2 .

y=C1+C2x .

y=C1+C2/x .

y=C1+C2/x2 .




y′′=f(y,y′) ko‘rinishdagi differensial tenglamani tartibni pasaytirish usulida integrallash uchun qanday almashtirmadan foydalaniladi

y=p(y) .

y′′=p(y) .

y′′= p(x) .

y= p(x) .

y=p(x) .

Yüklə 342,17 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin